In this work,we proposed a strategy for the hydrolysis of native corn starch after the treatment of corn starch in an ionic liquid aqueous solution,and it is an awfully“green”and simple means to obtain starch with l...In this work,we proposed a strategy for the hydrolysis of native corn starch after the treatment of corn starch in an ionic liquid aqueous solution,and it is an awfully“green”and simple means to obtain starch with low molecular weight and amorphous state.X-ray diffraction results revealed that the natural starch crystalline region was largely disrupted by ionic liquid owing to the broken intermolecular and intramolecular hydrogen bonds.After hydrolysis,the morphology of starch changed from particles of native corn starch into little pieces,and their molecular weight could be effectively regulated during the hydrolysis process,and also the hydrolyzed starch samples exhibited decreased thermal stability with the extension of hydrolysis time.This work would counsel as a powerful tool for the development of native starch in realistic applications.展开更多
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy...With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments.展开更多
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu...A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.展开更多
In this study, strong ground motion record (SGMR) selection based on Eta (~/) as a spectral shape indicator has been investigated as applied to steel braced flame structures. A probabilistic seismic hazard disaggr...In this study, strong ground motion record (SGMR) selection based on Eta (~/) as a spectral shape indicator has been investigated as applied to steel braced flame structures. A probabilistic seismic hazard disaggregation analysis for the definition of the target Epsilon (ε) and the target Eta (η) values at different hazard levels is presented, taking into account appropriately selected SGMR's. Fragility curves are developed for different limit states corresponding to three representative models of typical steel braced frames having significant irregularities in plan, by means of a weighted damage index. The results show that spectral shape indicators have an important effect on the predicted median structural capacities, and also that the parameter r/is a more robust predictor of damage than searching for records with appropriate c values.展开更多
The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle me...The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle method (FPM), this paper presents the first application of the FPM and a recently-developed membrane model to the shape analysis of light weight mem- branes. The FPM is rooted in vector mechanics and physical viewpoints. It discretizes the analyzed domain into a group of parti- cles linked by elements, and the motion of the free particles is directly described by Newton's second law while the constrained ones follow the prescribed paths. An efficient physical modeling procedure of handling geometric nonlinearity has been developed to evaluate the particle interaction forces. To achieve the equilibrium shape as fast as possible, an integral-form, explicit time integration scheme has been proposed for solving the equation of motion. The equilibrium shape can be obtained naturally without nonlinear iterative correction and global stiffness matrix integration. Two classical curved surfaces of tension membranes pro- duced under the uniform-stress condition are presented to verify the accuracy and efficiency of the proposed method.展开更多
Scattering and diffraction of elastic in-plane P- and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and...Scattering and diffraction of elastic in-plane P- and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong motion seismologists for over forty years. The case of out-of- plane SH-waves on the same elastic canyon that is semicircular in shape on the half-space surface is the first such problem that was solved by analytic closed-form solutions over forty years ago by Trifunac. The corresponding case of in-plane P- and SV- waves on the same circular canyon is a much more complicated problem because the in-plane P- and SV- scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by Lee and Liu. This paper uses their technique of defining these stress-free scattered waves, which Brandow and Lee previously used to solve the problem of the scattering and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape, to the study of the scattering and diffraction of these in-plane waves on an almost circular arbitrary-shaped alluvial valley.展开更多
The purpose of this study was to examine the prevalence of body shape dissatisfaction, weight and physical activity status among university students and predictors for body shape dissatisfaction. A cross sectional stu...The purpose of this study was to examine the prevalence of body shape dissatisfaction, weight and physical activity status among university students and predictors for body shape dissatisfaction. A cross sectional study was carried out in a sample comprising of 368 female and male university students aged 18 years or more at King Faisal University, Saudi Arabia. Body weight, height, Body Shape Questionnaire (BSQ) and physical activity level were used as assessment tools. Chi-square and independent sample T-test were used to assess gender difference. Linear regression analysis was conducted to examine predictors of the body shape dissatisfaction. Overall, 65% of students had normal BMI, more males then females overweight (23%), while more females underweight (16.8%). Females have higher body shape dissatisfaction (33.5%) then males (21.4%), half of males inactive and this percentage increased in females to (73.8%). Overweight males were more dissatisfied with their body shape (10.7%) than females (6.3%). Almost one fifth of inactive males dissatisfied comparable to quarter inactive females dissatisfied with their body shape. Younger age is predictor for body shape dissatisfaction in both genders, also weight in males. BMI and being married female was predictor for body shape dissatisfaction. Collectively results indicate that body shape dissatisfaction and inactive lifestyle were prevalent among females than male’s age, weight;BMI and marital status was the most predictor for body shape dissatisfaction. However developing educational program to promote body shape satisfaction and active lifestyle will be very useful especially among females.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating t...The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating temperatures above 400℃is a significant challenge[1-3].It is known that reversible thermoelas-tic martensitic transformation(MT)is the basis for shape mem-ory behavior[4].Currently,there are several systems in which MT temperatures meet the above requirements,for example,RuNb[5],HfPd[6],TiPd[7].展开更多
As an essential field of multimedia and computer vision,3D shape recognition has attracted much research attention in recent years.Multiview-based approaches have demonstrated their superiority in generating effective...As an essential field of multimedia and computer vision,3D shape recognition has attracted much research attention in recent years.Multiview-based approaches have demonstrated their superiority in generating effective 3D shape representations.Typical methods usually extract the multiview global features and aggregate them together to generate 3D shape descriptors.However,there exist two disadvantages:First,the mainstream methods ignore the comprehensive exploration of local information in each view.Second,many approaches roughly aggregate multiview features by adding or concatenating them together.The information loss for some discriminative characteristics limits the representation effectiveness.To address these problems,a novel architecture named region-based joint attention network(RJAN)was proposed.Specifically,the authors first design a hierarchical local information exploration module for view descriptor extraction.The region-to-region and channel-to-channel relationships from different granularities can be comprehensively explored and utilised to provide more discriminative characteristics for view feature learning.Subsequently,a novel relation-aware view aggregation module is designed to aggregate the multiview features for shape descriptor generation,considering the view-to-view relationships.Extensive experiments were conducted on three public databases:ModelNet40,ModelNet10,and ShapeNetCore55.RJAN achieves state-of-the-art performance in the tasks of 3D shape classification and 3D shape retrieval,which demonstrates the effectiveness of RJAN.The code has been released on https://github.com/slurrpp/RJAN.展开更多
Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show ...Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation.展开更多
Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of sh...Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.展开更多
This article presents a detailed theoretical hybrid analysis of the magnetism and the thermal radiative heat transfer in the presence of heat generation affecting the behavior of the dispersed gold nanoparticles(AuNPs...This article presents a detailed theoretical hybrid analysis of the magnetism and the thermal radiative heat transfer in the presence of heat generation affecting the behavior of the dispersed gold nanoparticles(AuNPs)through the blood vessels of the human body.The rheology of gold-blood nanofluid is treated as magnetohydrodynamic(MHD)flow with ferromagnetic properties.The AuNPs take different shapes as bricks,cylinders,and platelets which are considered in changing the nanofluid flow behavior.Physiologically,the blood is circulated under the kinetics of the peristaltic action.The mixed properties of the slip flow,the gravity,the space porosity,the transverse ferromagnetic field,the thermal radiation,the nanoparticles shape factors,the peristaltic amplitude ratio,and the concentration of the AuNPs are interacted and analyzed for the gold-blood circulation in the inclined tube.The appropriate model for the thermal conductivity of the nanofluid is chosen to be the effective Hamilton-Crosser model.The undertaken nanofluid can be treated as incompressible non-Newtonian ferromagnetic fluid.The solutions of the partial differential governing equations of the MHD nanofluid flow are executed by the strategy of perturbation approach under the assumption of long wavelength and low Reynolds number.Graphs for the streamwise velocity distributions,temperature distributions,pressure gradients,pressure drops,and streamlines are presented under the influences of the pertinent properties.The practical implementation of this research finds application in treating cancer through a technique known as photothermal therapy(PTT).The results indicate the control role of the magnetism,the heat generation,the shape factors of the AuNPs,and its concentration on the enhancement of the thermal properties and the streamwise velocity of the nanofluid.The results reveal a marked enhancement in the temperature profiles of the nanofluid,prominently influenced by both the intensified heat source and the heightened volume fractions of the nanoparticles.Furthermore,the platelet shape is regarded as most advantageous for heat conduction owing to its highest effective thermal conductivity.AuNPs proved strong efficiency in delivering and targeting the drug to reach the affected area with tumors.These results offer valuable insights into evaluating the effectiveness of PTT in addressing diverse cancer conditions and regulating their progression.展开更多
The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure ...The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure variations,potentially causing catastrophic damage to the container.Current studies mainly focus on non-deforming projectiles,such as fragments,with limited exploration of shaped charge jets.In this paper,a uniquely experimental system was designed to record cavity profiles in behind-armor liquid-filled containers subjected to shaped charge jet impacts.The impact process was then numerically reproduced using the explicit simulation program ANSYS LS-DYNA with the Structured Arbitrary Lagrangian-Eulerian(S-ALE)solver.The formation mechanism,along with the dimensional and shape evolution of the cavity was investigated.Additionally,the influence of the impact kinetic energy of the jet on the cavity characteristics was analyzed.The findings reveal that the cavity profile exhibits a conical shape,primarily driven by direct jet impact and inertial effects.The expansion rates of both cavity length and maximum radius increase with jet impact kinetic energy.When the impact kinetic energy is reduced to 28.2 kJ or below,the length-to-diameter ratio of the cavity ultimately stabilizes at approximately 7.展开更多
To investigate the effects of the maximum principal stress direction(θ)and cross-section shape on the failure characteristics of sandstone,true-triaxial compression experiments were conducted using cubic samples with...To investigate the effects of the maximum principal stress direction(θ)and cross-section shape on the failure characteristics of sandstone,true-triaxial compression experiments were conducted using cubic samples with rectangular,circular,and D-shaped holes.Asθincreases from 0°to 60°in the rectangular hole,the left failure location shifts from the left corner to the left sidewall,the left corner,and then the floor,while the right failure location shifts from the right corner to the right sidewall,right roof corner,and then the roof.Furthermore,the initial failure vertical stress first decreases and then increases.In comparison,the failure severity in the rectangular hole decreases for variousθvalues as 30°>45°>60°>0°.With increasingθ,the fractal dimension(D)of rock slices first increases and then decreases.For the rectangular and D-shaped holes,whenθ=0°,30°,and 90°,D for the rectangular hole is less than that of the D-shaped hole.Whenθ=45°and 60°,D for the rectangular hole is greater than that of the D-shaped hole.Theoretical analysis indicates that the stress concentration at the rectangular and D-shaped corners is greater than the other areas.The failure location rotates with the rotation ofθ,and the failure occurs on the side with a high concentration of compressive stress,while the side with the tensile and compressive stresses remains relatively stable.Therefore,the fundamental reason for the rotation of failure location is the rotation of stress concentration,and the external influencing factor is the rotation ofθ.展开更多
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ...Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.展开更多
Fine tailoring the shape of nanosheets is still a big challenge as the difficult synthesis for highly controlled ultrathin nanosheets.Here we report a facile strategy for tailoring the shape of ultra-thin NdF_(3) nano...Fine tailoring the shape of nanosheets is still a big challenge as the difficult synthesis for highly controlled ultrathin nanosheets.Here we report a facile strategy for tailoring the shape of ultra-thin NdF_(3) nanosheets via a hot injection method.In this method,NdF_(3) nanosheets with only about 2 nm in thickness synthesized first via a hot injection method.The shape of the NdF_(3) nanosheets was able to be tailored from flower-like to the round or the triangular shapes simply by decreasing the reaction temperature from 300℃to 280℃or 260℃.The driven force of the NdF_(3) nanosheets’shape tailoring by the temperature could be that a lower crystal growth rate will guarantee the more stable facets exposed at lower temperature,while under the condition of slow precursor injection,a higher temperature will lead to a further decrease in the crystal growth rate.This shape control method of NdF_(3) nanosheets is highly robust,which could be promoted to other materials.展开更多
文摘In this work,we proposed a strategy for the hydrolysis of native corn starch after the treatment of corn starch in an ionic liquid aqueous solution,and it is an awfully“green”and simple means to obtain starch with low molecular weight and amorphous state.X-ray diffraction results revealed that the natural starch crystalline region was largely disrupted by ionic liquid owing to the broken intermolecular and intramolecular hydrogen bonds.After hydrolysis,the morphology of starch changed from particles of native corn starch into little pieces,and their molecular weight could be effectively regulated during the hydrolysis process,and also the hydrolyzed starch samples exhibited decreased thermal stability with the extension of hydrolysis time.This work would counsel as a powerful tool for the development of native starch in realistic applications.
文摘With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments.
基金supported by Guangdong Major Project of Basic and Applied Basic Research, China (No. 2020B0301030006)Fundamental Research Funds for the Central Universities, China (No. SWU-XDJH202313)+1 种基金Chongqing Postdoctoral Science Foundation Funded Project, China (No. 2112012728014435)the Chongqing Postgraduate Research and Innovation Project, China (No. CYS23197)。
文摘A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.
文摘In this study, strong ground motion record (SGMR) selection based on Eta (~/) as a spectral shape indicator has been investigated as applied to steel braced flame structures. A probabilistic seismic hazard disaggregation analysis for the definition of the target Epsilon (ε) and the target Eta (η) values at different hazard levels is presented, taking into account appropriately selected SGMR's. Fragility curves are developed for different limit states corresponding to three representative models of typical steel braced frames having significant irregularities in plan, by means of a weighted damage index. The results show that spectral shape indicators have an important effect on the predicted median structural capacities, and also that the parameter r/is a more robust predictor of damage than searching for records with appropriate c values.
基金Project supported by the National Natural Science Foundation of China (Nos. 51025858 and 51178415)
文摘The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle method (FPM), this paper presents the first application of the FPM and a recently-developed membrane model to the shape analysis of light weight mem- branes. The FPM is rooted in vector mechanics and physical viewpoints. It discretizes the analyzed domain into a group of parti- cles linked by elements, and the motion of the free particles is directly described by Newton's second law while the constrained ones follow the prescribed paths. An efficient physical modeling procedure of handling geometric nonlinearity has been developed to evaluate the particle interaction forces. To achieve the equilibrium shape as fast as possible, an integral-form, explicit time integration scheme has been proposed for solving the equation of motion. The equilibrium shape can be obtained naturally without nonlinear iterative correction and global stiffness matrix integration. Two classical curved surfaces of tension membranes pro- duced under the uniform-stress condition are presented to verify the accuracy and efficiency of the proposed method.
文摘Scattering and diffraction of elastic in-plane P- and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong motion seismologists for over forty years. The case of out-of- plane SH-waves on the same elastic canyon that is semicircular in shape on the half-space surface is the first such problem that was solved by analytic closed-form solutions over forty years ago by Trifunac. The corresponding case of in-plane P- and SV- waves on the same circular canyon is a much more complicated problem because the in-plane P- and SV- scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by Lee and Liu. This paper uses their technique of defining these stress-free scattered waves, which Brandow and Lee previously used to solve the problem of the scattering and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape, to the study of the scattering and diffraction of these in-plane waves on an almost circular arbitrary-shaped alluvial valley.
文摘The purpose of this study was to examine the prevalence of body shape dissatisfaction, weight and physical activity status among university students and predictors for body shape dissatisfaction. A cross sectional study was carried out in a sample comprising of 368 female and male university students aged 18 years or more at King Faisal University, Saudi Arabia. Body weight, height, Body Shape Questionnaire (BSQ) and physical activity level were used as assessment tools. Chi-square and independent sample T-test were used to assess gender difference. Linear regression analysis was conducted to examine predictors of the body shape dissatisfaction. Overall, 65% of students had normal BMI, more males then females overweight (23%), while more females underweight (16.8%). Females have higher body shape dissatisfaction (33.5%) then males (21.4%), half of males inactive and this percentage increased in females to (73.8%). Overweight males were more dissatisfied with their body shape (10.7%) than females (6.3%). Almost one fifth of inactive males dissatisfied comparable to quarter inactive females dissatisfied with their body shape. Younger age is predictor for body shape dissatisfaction in both genders, also weight in males. BMI and being married female was predictor for body shape dissatisfaction. Collectively results indicate that body shape dissatisfaction and inactive lifestyle were prevalent among females than male’s age, weight;BMI and marital status was the most predictor for body shape dissatisfaction. However developing educational program to promote body shape satisfaction and active lifestyle will be very useful especially among females.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金supported by the National Natural Science Foundation of China(Nos.52201207 and 52271169)the Fundamental Research Funds for the Central University(No.3072024LJ1002).
文摘The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating temperatures above 400℃is a significant challenge[1-3].It is known that reversible thermoelas-tic martensitic transformation(MT)is the basis for shape mem-ory behavior[4].Currently,there are several systems in which MT temperatures meet the above requirements,for example,RuNb[5],HfPd[6],TiPd[7].
基金the National Key Research and Development Program of China,Grant/Award Number:2020YFB1711704the National Natural Science Foundation of China,Grant/Award Number:62272337。
文摘As an essential field of multimedia and computer vision,3D shape recognition has attracted much research attention in recent years.Multiview-based approaches have demonstrated their superiority in generating effective 3D shape representations.Typical methods usually extract the multiview global features and aggregate them together to generate 3D shape descriptors.However,there exist two disadvantages:First,the mainstream methods ignore the comprehensive exploration of local information in each view.Second,many approaches roughly aggregate multiview features by adding or concatenating them together.The information loss for some discriminative characteristics limits the representation effectiveness.To address these problems,a novel architecture named region-based joint attention network(RJAN)was proposed.Specifically,the authors first design a hierarchical local information exploration module for view descriptor extraction.The region-to-region and channel-to-channel relationships from different granularities can be comprehensively explored and utilised to provide more discriminative characteristics for view feature learning.Subsequently,a novel relation-aware view aggregation module is designed to aggregate the multiview features for shape descriptor generation,considering the view-to-view relationships.Extensive experiments were conducted on three public databases:ModelNet40,ModelNet10,and ShapeNetCore55.RJAN achieves state-of-the-art performance in the tasks of 3D shape classification and 3D shape retrieval,which demonstrates the effectiveness of RJAN.The code has been released on https://github.com/slurrpp/RJAN.
基金funded by the National Natural Science Founda-tion of China(52071109).
文摘Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation.
基金supported by the National Science Foundation of China(Grant Nos.12372361,12102427,12372335 and 12102202)the Fundamental Research Funds for the Central Universities(Grant No.30923010908)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0520).
文摘Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.
文摘This article presents a detailed theoretical hybrid analysis of the magnetism and the thermal radiative heat transfer in the presence of heat generation affecting the behavior of the dispersed gold nanoparticles(AuNPs)through the blood vessels of the human body.The rheology of gold-blood nanofluid is treated as magnetohydrodynamic(MHD)flow with ferromagnetic properties.The AuNPs take different shapes as bricks,cylinders,and platelets which are considered in changing the nanofluid flow behavior.Physiologically,the blood is circulated under the kinetics of the peristaltic action.The mixed properties of the slip flow,the gravity,the space porosity,the transverse ferromagnetic field,the thermal radiation,the nanoparticles shape factors,the peristaltic amplitude ratio,and the concentration of the AuNPs are interacted and analyzed for the gold-blood circulation in the inclined tube.The appropriate model for the thermal conductivity of the nanofluid is chosen to be the effective Hamilton-Crosser model.The undertaken nanofluid can be treated as incompressible non-Newtonian ferromagnetic fluid.The solutions of the partial differential governing equations of the MHD nanofluid flow are executed by the strategy of perturbation approach under the assumption of long wavelength and low Reynolds number.Graphs for the streamwise velocity distributions,temperature distributions,pressure gradients,pressure drops,and streamlines are presented under the influences of the pertinent properties.The practical implementation of this research finds application in treating cancer through a technique known as photothermal therapy(PTT).The results indicate the control role of the magnetism,the heat generation,the shape factors of the AuNPs,and its concentration on the enhancement of the thermal properties and the streamwise velocity of the nanofluid.The results reveal a marked enhancement in the temperature profiles of the nanofluid,prominently influenced by both the intensified heat source and the heightened volume fractions of the nanoparticles.Furthermore,the platelet shape is regarded as most advantageous for heat conduction owing to its highest effective thermal conductivity.AuNPs proved strong efficiency in delivering and targeting the drug to reach the affected area with tumors.These results offer valuable insights into evaluating the effectiveness of PTT in addressing diverse cancer conditions and regulating their progression.
基金financial support from the National Natural Science Foundation of China(Grant No.11572159).
文摘The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure variations,potentially causing catastrophic damage to the container.Current studies mainly focus on non-deforming projectiles,such as fragments,with limited exploration of shaped charge jets.In this paper,a uniquely experimental system was designed to record cavity profiles in behind-armor liquid-filled containers subjected to shaped charge jet impacts.The impact process was then numerically reproduced using the explicit simulation program ANSYS LS-DYNA with the Structured Arbitrary Lagrangian-Eulerian(S-ALE)solver.The formation mechanism,along with the dimensional and shape evolution of the cavity was investigated.Additionally,the influence of the impact kinetic energy of the jet on the cavity characteristics was analyzed.The findings reveal that the cavity profile exhibits a conical shape,primarily driven by direct jet impact and inertial effects.The expansion rates of both cavity length and maximum radius increase with jet impact kinetic energy.When the impact kinetic energy is reduced to 28.2 kJ or below,the length-to-diameter ratio of the cavity ultimately stabilizes at approximately 7.
基金supported by the National Natural Science Foundation of China (Grant Nos.52304227 and 52104133)Scientific and Technological Research Platform for Disaster Prevention and Control of Deep Coal Mining (Anhui University of Science and Technology) (Grant No.DPDCM2208).
文摘To investigate the effects of the maximum principal stress direction(θ)and cross-section shape on the failure characteristics of sandstone,true-triaxial compression experiments were conducted using cubic samples with rectangular,circular,and D-shaped holes.Asθincreases from 0°to 60°in the rectangular hole,the left failure location shifts from the left corner to the left sidewall,the left corner,and then the floor,while the right failure location shifts from the right corner to the right sidewall,right roof corner,and then the roof.Furthermore,the initial failure vertical stress first decreases and then increases.In comparison,the failure severity in the rectangular hole decreases for variousθvalues as 30°>45°>60°>0°.With increasingθ,the fractal dimension(D)of rock slices first increases and then decreases.For the rectangular and D-shaped holes,whenθ=0°,30°,and 90°,D for the rectangular hole is less than that of the D-shaped hole.Whenθ=45°and 60°,D for the rectangular hole is greater than that of the D-shaped hole.Theoretical analysis indicates that the stress concentration at the rectangular and D-shaped corners is greater than the other areas.The failure location rotates with the rotation ofθ,and the failure occurs on the side with a high concentration of compressive stress,while the side with the tensile and compressive stresses remains relatively stable.Therefore,the fundamental reason for the rotation of failure location is the rotation of stress concentration,and the external influencing factor is the rotation ofθ.
基金Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1445)。
文摘Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.
文摘Fine tailoring the shape of nanosheets is still a big challenge as the difficult synthesis for highly controlled ultrathin nanosheets.Here we report a facile strategy for tailoring the shape of ultra-thin NdF_(3) nanosheets via a hot injection method.In this method,NdF_(3) nanosheets with only about 2 nm in thickness synthesized first via a hot injection method.The shape of the NdF_(3) nanosheets was able to be tailored from flower-like to the round or the triangular shapes simply by decreasing the reaction temperature from 300℃to 280℃or 260℃.The driven force of the NdF_(3) nanosheets’shape tailoring by the temperature could be that a lower crystal growth rate will guarantee the more stable facets exposed at lower temperature,while under the condition of slow precursor injection,a higher temperature will lead to a further decrease in the crystal growth rate.This shape control method of NdF_(3) nanosheets is highly robust,which could be promoted to other materials.