The Paleo-Pacific Plate stagnated in the mantle transition zone beneath northeast Asia during the Late Mesozoic,resulting in the eastern Asian big mantle wedge(BMW).However,its formation mechanism remains unclear.Here...The Paleo-Pacific Plate stagnated in the mantle transition zone beneath northeast Asia during the Late Mesozoic,resulting in the eastern Asian big mantle wedge(BMW).However,its formation mechanism remains unclear.Here,we analyzed elemental and isotopic compositions of 126-60 Ma intraplate basaltic rocks to map the mantle flow pattern and investigate the implications for the formation of the BMW.These rocks exhibit eastward an increase in Ba/Nb,Ba/La,^(87)Sr/^(86)Sr,and^(208)Pb/^(204)Pb ratios,while a decrease in Nb/Yb,Zr/Yb,Ta/Yb,and Nb/Nb*ratios,indicating mixing between the fertile mantle and the depleted mantle modified by slab material,implying the occurrence of trench-perpendicular mantle flow.The coeval mantle flow and formation of the BMW,the similar directions of mantle flow and Paleo-Pacific Plate subduction,and migration of basin depocenters indicate trench-perpendicular mantle flow was a key factor in the formation of the BMW.Moreover,these basaltic rocks have elevatedδ^(66)Zn values(0.22‰to 0.52‰),indicating recycled carbonates have been added into their mantle source,which increased the mantle flow velocity.Combined with slab roll-back in the Late Mesozoic,it created the essential conditions for mantle flow to promote the formation of the eastern Asian BMW.展开更多
The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of ...The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of an open pit slope.For this purpose,spatially conditioned DFN models were developed for the pit walls at Tasiast mine using comprehensive structural data from the mine.Using Sequential Gaussian Simulation(SGS),volumetric fracture intensities(P32)were modeled across the entire mine site in the form of 3D block models.The simulated P32 block models were used as the input constraints for conditional DFN fracture generation,where the DFN grid dimension is the same as the SGS 3D blocks.The spatially constrained DFN models were further calibrated using aerial fracture intensities(P21)data from the pit walls,obtained by a survey of the pit walls using an unmanned aerial vehicle(UAV)and measured traces of joints from 3D point cloud data.The final DFN model is expected to honor the fracture intensities gathered through different means with optimal model accuracy.Finally,bench-scale and interramp scale rock wedge slope stability analyses were conducted using the calibrated conditional DFN models.This work proves the significance of conditioned DFN models in rock wedge stability analysis.Such models provide detailed information regarding rock wedge stability so that site monitoring and prevention plans can be conducted with higher efficiency.展开更多
The phenomenon of shock/shock interaction(SSI)is widely observed in high-speed flow,and the double wedge SSI represents one of the typical problems encountered.The control effect of single-pulse plasma synthetic jet(P...The phenomenon of shock/shock interaction(SSI)is widely observed in high-speed flow,and the double wedge SSI represents one of the typical problems encountered.The control effect of single-pulse plasma synthetic jet(PSJ)on double wedge type-Ⅵand type-ⅤSSI was investigated experimentally and numerically,and the influence of discharge energy was also explored.The findings indicate that the interaction between PSJ and the high-speed freestream results in the formation of a plasma layer and a jet shock,which collectively governs the control of SSI.The control mechanism of single-pulse PSJ on SSI lies in its capacity to attenuate both shock and SSI.For type-ⅥSSI,the original second-wedge oblique shock is eliminated under the control of PSJ,resulting in a new type-ⅥSSI formed by the jet shock and the first-wedge oblique shock.For type-ⅤSSI,the presence of PSJ effectively mitigates the intensity of Mach stem,supersonic jet,and reflected shocks,thereby facilitating its transition into type-ⅥSSI.The numerical results indicate that the peak pressure can be reduced by approximately 32.26%at maximum.Furthermore,the development of PSJ also extends in the Z direction.The pressure decreases in the area affected by both PSJ and jet shock due to the attenuation of the SSI zone.With increasing discharge energy,the control effect of PSJ on SSI is gradually enhanced.展开更多
BACKGROUND Wedged hepatic venous pressure(WHVP)is a crucial variable for accurately assessing the hepatic venous pressure gradient(HVPG)and is vital for the diagnosis and prognostic evaluation of patients with portal ...BACKGROUND Wedged hepatic venous pressure(WHVP)is a crucial variable for accurately assessing the hepatic venous pressure gradient(HVPG)and is vital for the diagnosis and prognostic evaluation of patients with portal hypertension(PH).AIM To investigate the anatomical characteristics of balloon-occluded hepatic venous angiography in patients with PH and analyze the relationship between the WHVP and portal venous pressure(PVP).METHODS This retrospective study included 877 patients with PH who met the inclusion criteria from January 2020 to June 2024.Routine and innovative hepatic venous angiography was performed during transjugular intrahepatic portosystemic shunt procedures to measure hepatic venous and PVPs.All patients'angiographic images were collected for analysis.The associations between WHVP and PVP in each group were analyzed via linear regression analysis,and a predictive model was established.RESULTS The 877 patients had a mean age of 52.6±13.0 years,with 582 males and 295 females.Patients were categorized into four groups on the basis of their anatomical structure.All groups showed strong correlations between WHVP and PVP.The regression coefficient between the WHVP and PVP in the hepatic right vein-portal venous angiography group was 0.884(P<0.05);in the hepatic right vein-accessory hepatic venous angiography group,it was 0.721(P<0.05);in the hepatic right vein-middle hepatic venous angiography group,it was 0.344(P<0.05);and in the hepatic right vein-nonangiography group,it was 0.293(P<0.05).CONCLUSION The presence and anatomical classification of hepatic venous collaterals are key factors influencing the relationship between WHVP with and PVP.Based on the different anatomical classifications of hepatic veins,WHVP can be used to estimate PVP,improving the accuracy of PVP prediction.展开更多
Seismic quantitative reservoir simulations and characterizations have played a vital role in exploring stratigraphic traps,such as lateaggradational lowstands prograding wedge systems(LPWS)within lowstands systems tra...Seismic quantitative reservoir simulations and characterizations have played a vital role in exploring stratigraphic traps,such as lateaggradational lowstands prograding wedge systems(LPWS)within lowstands systems tracts(LST).However,seismic data acquisition operations are always dominated by exceptional seismic coherent noise events,e.g.,multiples,which reduce the signal strengths of the sourcegenerated incident seismic waves within vertically and laterally heterogeneous earth systems.Hence,these noise events create hurdles in predicting paleo-depositional impedance(PDI),paleo-thickness(PTS),paleo-dense fractured networks,erosional and depositional zones,faultcontrolled migrations,and types of seismic reflection configurations(SRFC),which are key elements in developing stratigraphic pinch-out traps.This research utilizes the state-of-the-art technologies of spectral wavelet-based instantaneous time-frequency analysis and seismic waveform frequency-controlled porosity-constrained static reservoir simulation(FDPVS)tools to quantify the LPWS inside the Onshore Basin,Pakistan.The use of conventional amplitude-based seismic attributes,such as the average energy,remained a better tool for deciphering the overall geological architecture of the LPWS.Conventional FDPVS realizations resolved a PDI of−1.391 gm./c.c.^(*)m/s to−0.97 gm./c.c.^(*)m/s for LPWS with PTS of 12 and 20 m,respectively.A 0.9 km lateral extent of paleo-dense fractured networks(PDFN)with a strong linear regression R^(2)=0.93 was also resolved.Average energy attribute-based instantaneous frequency FDPVS realizations enabled the imaging of parallel-toprograding SRFC with resolved magnitudes of−0.259 gm./c.c.^(*)m/s for PDI,20 m for PTS,and 0.73 km for PDFN with linear regression transforms at R^(2)=0.92,which indicates the deposition of onlap fill facies inside the LPWS during extensive sea-level fall.These realizations have also resolved frequency-controlled fault migrations on 27-Hz spectral waveform-based amplitude plots with 2.174 gm./c.c.^(*)m/s PDI for conduit fault systems and 27-Hz with 0.585 gm./c.c.^(*)m/s PDI for sealing fault systems.All these structural configurations are completely sealed up by transgressive seals of transgressive systems tracts and,hence,developed into pure stratigraphic-based oil and gas plays.This research has strong implications for side-tracking drilling locations and provides an analogue for basins with similar geology and stratigraphy worldwide.展开更多
304 stainless steel(SS)/Q235 carbon steel(CS)bimetallic composite shafts were prepared by the cross wedge rolling(CWR).The bonding interface welding mechanism was investigated through CWR rolling experiments and finit...304 stainless steel(SS)/Q235 carbon steel(CS)bimetallic composite shafts were prepared by the cross wedge rolling(CWR).The bonding interface welding mechanism was investigated through CWR rolling experiments and finite element simulation,as well as element diffusion,microstructure analysis,and mechanical property tests.According to simulation studies,the bonding interface is primarily subjected to three-directional compressive stresses at the tool-workpiece contact zone.As compression ratio increases from 0.25 to 0.35,the interface of the stress penetration area increases,while the diameter and wall thickness of CS/SS bimetallic shaft decrease,and hence,thickness-to-diameter ratio remains unchanged,which is conducive to the coordinated deformation of inner and outer metals and the interface of welded joints.The microstructure analysis of the interface shows that there are no obvious defects and cracks in the attachment,and that the microstructure on CS side is dominated by ferrite and martensite phases.Caused by the decarburization effect,Q235 steel microstructure features coarse ferrite,accompanied by a carburized layer with a thickness of about 20μm on SS side near the interface where grains are refined.As radial compression ratio increases,the diffusion distance of Cr,Ni,and other elements increases,the average thickness of the decarburized layer decreases,the interfacial bonding strength increases from 450 to 490 MPa,and metallurgical bonding at the interface is thus improved.The study demonstrates that it is feasible to use 304 SS and Q235 CS for cross wedge rolling composite shafts.展开更多
The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the fo...The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the formation mechanism of shallow normal faults, remain unclear. Meanwhile, the factors affecting the continuity of plane faults must be comprehensively discussed. Clarifying the development characteristics and deformation mechanisms of the Makran accretionary wedge is crucial to effectively guide the exploration of gas hydrate deposits in the area. This study aims to interpret seismic data to identify typical structures in the Makran accretionary wedge, including deep imbricate thrust faults, shallow and small normal faults, wedge-shaped piggyback basins, mud diapirs with fuzzy and disorderly characteristics of reflection, décollements with a northward tilt of 1° – 2°, and large seamounts. Physical simulation-based experiments are performed to comprehensively analyze the results of the plane, section, and slices of the wedge. Results reveal that the distances between and shapes of thrust faults in the deep parts of the Makran accretionary wedge are controlled by the bottom décollement. The uplift of the thrust fault-related folds and the upwelling of the mud diapirs primarily contribute to the formation of small normal faults in the shallow part of the area. The mud diapirs originate from plastic material at the bottom, while those that have developed in the area near the trench are larger. Seamounts and mud diapirs break the continuity of fault plane distribution.展开更多
To overcome the inaccuracy problem of the traditional wedge evaluation of steel plates and strips caused by the ran-domness of the thicknesses of two local points and improve the reliability of the wedge index,the dou...To overcome the inaccuracy problem of the traditional wedge evaluation of steel plates and strips caused by the ran-domness of the thicknesses of two local points and improve the reliability of the wedge index,the double-centroid method for the wedge evaluation was proposed,and a model based on the centroid theory was established.Meanwhile,an integral model for the discrete thickness values of the cross-section profiles was derived.The discussion focused on the distinct characteristics of the two-point method,asymmetric method,and double-centroid method in evaluating the asymmetric distribution of cross-sections.The three methods were employed to evaluate the wedge values of both the theoretical and measured cross-sections of steel plates and strips,and the accuracies of three wedge evaluation models were analyzed and discussed.The results showed that the double-centroid method objectively reflects the degree and variation characteristics of the wedge values of the cross-sections of steel plates and strips,and this method is feasible,reliable,and outstanding.展开更多
BACKGROUND Gastroesophageal junction(GEJ)or gastrointestinal stromal tumor(GIST)are located in unfavorable parts of the stomach,due to the anatomical complexity of these regions,protecting the cardia while ensuring R0...BACKGROUND Gastroesophageal junction(GEJ)or gastrointestinal stromal tumor(GIST)are located in unfavorable parts of the stomach,due to the anatomical complexity of these regions,protecting the cardia while ensuring R0 resection is a major challenge for surgeons.CASE SUMMARY Two cases of GEJ stromal tumors were reported.Abdominal computed tomography scans revealed that both tumors were located at the GEJ,close to the posterior wall,with one tumor measuring greater than 5 cm.Both patients successfully underwent robot-assisted laparoscopic wedge resection of the stomach.The surgeries achieved R0 resection while preserving the cardia sphincter and maximizing gastric tissue preservation.Postoperatively,no symptoms such as gastroesophageal reflux or cardia stenosis were observed.Case 1:Postoperative pathology:GIST.Immunohistochemical results:Tumor cells were positive for CD34,CD117,and DOG1,and negative for SMA,desmin,S-100,and SDHB(normal expression).The Ki-67 proliferation index was approximately 5%.Case 2:Postoperative pathology:GIST.Immunohistochemical results:Tumor cells were positive for CD117(++),CD34(++),DOG1(+++),and focal positivity for SMA.Negative for desmin,S-100(few cells positive),and SDHB(preserved expression).The Ki-67 proliferation index was approximately 10%.CONCLUSION The gastric tube-guided robotic-assisted laparoscopic resection is a safe and effective method for tumor resection while preserving the cardia,and it is worth further promotion in clinical practice.展开更多
The present study describes a river channel management method for restoring riverine environments degraded by sand mining in rivers.Specifically,three conditions that must be met for a restored river channel in the lo...The present study describes a river channel management method for restoring riverine environments degraded by sand mining in rivers.Specifically,three conditions that must be met for a restored river channel in the lower reach of the Kelani River in Sri Lanka were proposed:(1)flood discharge capacity of the channel for a given flood,(2)prevention of saltwater intrusion,and(3)creation of a diverse physical environment.The allowable mining volume satisfies the three conditions,while continuing to mine sand was discussed based on the sediment budget calculations in the target river reach.In this case,the amount of sediment stored in the target reach and its variation are determined by the amount of sediment supplied to the target reach,the amount of sediment discharged from the target reach to the sea,and the amount of sediment excavated.This means that the dynamic equilibrium channel of the target reach is determined by the amount of sediment supplied and the amount of sediment excavated.The amount of sand mined when the dynamic equilibrium channel meets the three conditions of the restored channel is a candidate for the allowable amount of sand mined.One of these,the most desirable one,is set as the allowable mining volume.As described above,we proposed a method to develop a restoring reach taking the sediment budget and associated hydraulic and hydro morphological conditions in the target reach into consideration.展开更多
Passive-roof duplexes accommodate shortening at the mountain front of many fold-and-thrust belts worldwide.These structures typically manifest at the surface by hinterland-verging backthrusts that decouple thin-skinne...Passive-roof duplexes accommodate shortening at the mountain front of many fold-and-thrust belts worldwide.These structures typically manifest at the surface by hinterland-verging backthrusts that decouple thin-skinned thrust sheets from underlying foreland-verging duplexes.Although the main fac-tors controlling the development of passive-roof duplexes have mostly been identified,some of their intrinsic characteristics are still poorly defined.These relate to their spatio-temporal relationships to thrust faults located further inland in orogens,and their ability to transport younger rocks over older ones.This study explores these issues in the Casentino-Romagna axial sector of the Northern Apennines,which expose regional forethrusts and backthrusts.Detailed field mapping and analysis of superposed tectonic structures were integrated with apatite fission-track dating for constraining the tim-ing of rock exhumation and correlated tectonic events.Collectively,the results have allowed us to inter-pret the evolution of the study area in terms of two main deformation stages.Specifically,a first,long phase(D_(1))progressed from NE-directed,in-sequence thrusting(∼18 to∼10-9 Ma)to late out-of-sequence thrusting(∼8-5 Ma).A successive deformation phase,that we refer to as D_(2)(∼4-2 Ma),con-sisted of backthrusts and associated folds that were ubiquitous and systematically overprinted onto the foreland-verging D_(1)structures.Such retrovergent structures identify a late deformation phase dom-inated by the development of passive-roof duplexes that propagated hinterlandward into the orogen up to beyond the primary watershed ridge.Orogen-scale processes controlled the evolution of forelandward D_(1)-phase thrusts,although late erosion could have played a major role by bringing the Apennine thrust wedge toward an undercritical state.The latter conditions could have contributed to keeping the out-of-sequence thrusts active,and eventually promoted the development of the D_(2)passive-roof duplexes.展开更多
Island-arc magmatism is a crucial process in the Earth’s crustal growth.However,how the island-arc magma production rate(MPR)changes and the key influencing factors remains unclear.This study employs numerical models...Island-arc magmatism is a crucial process in the Earth’s crustal growth.However,how the island-arc magma production rate(MPR)changes and the key influencing factors remains unclear.This study employs numerical models to simulate island-arc growth,incorporating slab dehydration,mantle hydration and melting,and melt extraction.In addition,the impacts of convergence rate and slab dip angle on island-arc magma production were studied.Results suggest that,(1)MPR increases with higher convergence rates;high convergence rates enhance slab water transport efficiency and mantle wedge convection,thereby promoting water fraction and temperature in potential molten regions;(2)MPR initially rises and then falls as the slab dip angle varies from 30°to 45°,and to 60°.This variation is closely tied to water content in the wedge rather than mantle temperature.However,a higher slab dip promotes dehydration towards the potential-melting mantle wedge,which causes water to ascend to shallow areas and reduces the area of the potential molten region.Ultimately,a dip angle of 45°is optimal for retaining the most suitable water fraction and mantle wedge area,thereby maintaining the largest MPR;(3)convergence rate variation has a much larger influence on magma production rate than dip angle variation.When the convergence rate varies from 2 to 10 cm/a,the largest time-averaged MPR is 64.0 times the smallest one,whereas when the slab dip varies from 30°to 60°,the largest time-averaged MPR is only 3.5 times the smallest one.These findings align with numerous instances observed in modern-day subduction zones.展开更多
Geomagnetic substorms release plasma and energy from the magnetotail to the inner magnetosphere and high latitude ionosphere.In this study,we investigate substorms of different time duration,observed during the years ...Geomagnetic substorms release plasma and energy from the magnetotail to the inner magnetosphere and high latitude ionosphere.In this study,we investigate substorms of different time duration,observed during the years 1982 to 2012.We measure substorm duration by a method based on the SME index.Our results demonstrate that longer-duration substorms occur more frequently during solar maximum years,and more frequently between the months of May and July,likely due to the higher polar ionospheric conductivity and more sunward geomagnetic pole directions during summer in the northern hemisphere.Additionally,longer substorms occur more frequently under stronger,longer-lasting southward IMF,and are accompanied by slower solar winds,suggesting that extended magnetic reconnection is required to drive longer substorms.Substorm durations are not significantly related to the minimum SML index,but longer substorms usually have higher SMU and continuously rising PC indices.The SME indices of long-duration substorms show a bimodal MLT distribution located near midnight and dusk after substorm onset,with the peak originally at midnight moving eastward to the morning side during the late recovery phase.Longer duration substorms have a stronger effect on the overall ring current at all MLT sectors except dawnside.Our results provide new insights into the development process and influencing factors of substorms,from the expansion phase to the recovery phase.展开更多
The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and nea...The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.展开更多
A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis com...A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.展开更多
When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation ref...When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H2/O2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.展开更多
An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to captur...An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to capture the shock wave.The numerical results show that with the compression of the wedge wall the detonation wave front structure is divided into three sections:the ZND model-like strcuture,single-sided triple point structure and dual-headed triple point strucuture.The first structure is the smooth straight,and the second has the characteristic of the triple points propagating dowanstream only with the same velocity,while the dual-headed triple point structure is very complicated.The detonation waves facing upstream and downstream propagate with different velocities,in which the periodic collisions of the triple points cause the oscillation of the detonation wave front.This oscillation process has temporal and spatial periodicity.In addition,the triple point trace are recorded to obtain different cell structures in three sections.展开更多
Pressure-gain combustion has gained attention for airbreathing ramjet engine applications owing to its better thermodynamic efficiency and fuel consumption rate. In contrast with traditional detonation induced by a si...Pressure-gain combustion has gained attention for airbreathing ramjet engine applications owing to its better thermodynamic efficiency and fuel consumption rate. In contrast with traditional detonation induced by a single wedge, the present study considers oblique shock interactions attached to double wedges in a hypersonic combustible flow. The temperature/pressure increases sharply across the interaction zone that initiates an exothermic reaction, finally resulting in an Oblique Detonation Wave(ODW). Compared with the case for a single-wedge ODW, the double-wedge geometry has great potential to control the initiation of the ODW. As a tentative study, two-dimensional compressible Euler equations with a two-step induction-reaction kinetic model are used to solve the detonation dynamics triggered by a double wedge. The effects of the wedge angles and wedge corner locations on the initiation structures are investigated numerically.The results show an ODW complex comprising three Oblique Shock Waves(OSWs), an induction zone, a curved detonation front, and an unburned/low-temperature gas belt close to the surface of the second wedge. Both the increasing wedge angle and downstream wedge corner location lead to an abrupt OSW–ODW transition type, whereas the former corresponds to the shock–shock interaction and the later has a greater effect on the exothermic chemical process. Analysis of the shock polar and flow scale confirms that the OSW–ODW initiation structure mainly depends on the coupling of shocks and heat release in a confined initiation zone.展开更多
The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave fiel...The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and effi- ciently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.展开更多
基金financially supported by the National Key R&D Program of China(No.2022YFF0801002)the National Natural Science Foundation of China(No.42372065)the Natural Science Foundation of Jilin Province(No.20220101178JC)。
文摘The Paleo-Pacific Plate stagnated in the mantle transition zone beneath northeast Asia during the Late Mesozoic,resulting in the eastern Asian big mantle wedge(BMW).However,its formation mechanism remains unclear.Here,we analyzed elemental and isotopic compositions of 126-60 Ma intraplate basaltic rocks to map the mantle flow pattern and investigate the implications for the formation of the BMW.These rocks exhibit eastward an increase in Ba/Nb,Ba/La,^(87)Sr/^(86)Sr,and^(208)Pb/^(204)Pb ratios,while a decrease in Nb/Yb,Zr/Yb,Ta/Yb,and Nb/Nb*ratios,indicating mixing between the fertile mantle and the depleted mantle modified by slab material,implying the occurrence of trench-perpendicular mantle flow.The coeval mantle flow and formation of the BMW,the similar directions of mantle flow and Paleo-Pacific Plate subduction,and migration of basin depocenters indicate trench-perpendicular mantle flow was a key factor in the formation of the BMW.Moreover,these basaltic rocks have elevatedδ^(66)Zn values(0.22‰to 0.52‰),indicating recycled carbonates have been added into their mantle source,which increased the mantle flow velocity.Combined with slab roll-back in the Late Mesozoic,it created the essential conditions for mantle flow to promote the formation of the eastern Asian BMW.
基金Kinross Gold and MITACS for their financial support(Grant No.FR42880).
文摘The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of an open pit slope.For this purpose,spatially conditioned DFN models were developed for the pit walls at Tasiast mine using comprehensive structural data from the mine.Using Sequential Gaussian Simulation(SGS),volumetric fracture intensities(P32)were modeled across the entire mine site in the form of 3D block models.The simulated P32 block models were used as the input constraints for conditional DFN fracture generation,where the DFN grid dimension is the same as the SGS 3D blocks.The spatially constrained DFN models were further calibrated using aerial fracture intensities(P21)data from the pit walls,obtained by a survey of the pit walls using an unmanned aerial vehicle(UAV)and measured traces of joints from 3D point cloud data.The final DFN model is expected to honor the fracture intensities gathered through different means with optimal model accuracy.Finally,bench-scale and interramp scale rock wedge slope stability analyses were conducted using the calibrated conditional DFN models.This work proves the significance of conditioned DFN models in rock wedge stability analysis.Such models provide detailed information regarding rock wedge stability so that site monitoring and prevention plans can be conducted with higher efficiency.
基金supported by the Independent Innovation Science Fund of National University of Defense Technology(No.24-ZZCX-BC-05)National Natural Science Foundation of China(Nos.92271110 and 12202488)+2 种基金the Major National Science and Technology Project(No.J2019-Ⅲ0010-0054)the National Postdoctoral Researcher Program of China(No.GZB20230985)the Natural Science Program of National University of Defense Technology(No.ZK22-30)。
文摘The phenomenon of shock/shock interaction(SSI)is widely observed in high-speed flow,and the double wedge SSI represents one of the typical problems encountered.The control effect of single-pulse plasma synthetic jet(PSJ)on double wedge type-Ⅵand type-ⅤSSI was investigated experimentally and numerically,and the influence of discharge energy was also explored.The findings indicate that the interaction between PSJ and the high-speed freestream results in the formation of a plasma layer and a jet shock,which collectively governs the control of SSI.The control mechanism of single-pulse PSJ on SSI lies in its capacity to attenuate both shock and SSI.For type-ⅥSSI,the original second-wedge oblique shock is eliminated under the control of PSJ,resulting in a new type-ⅥSSI formed by the jet shock and the first-wedge oblique shock.For type-ⅤSSI,the presence of PSJ effectively mitigates the intensity of Mach stem,supersonic jet,and reflected shocks,thereby facilitating its transition into type-ⅥSSI.The numerical results indicate that the peak pressure can be reduced by approximately 32.26%at maximum.Furthermore,the development of PSJ also extends in the Z direction.The pressure decreases in the area affected by both PSJ and jet shock due to the attenuation of the SSI zone.With increasing discharge energy,the control effect of PSJ on SSI is gradually enhanced.
基金Supported by Capital Medical University Affiliated Beijing Shijitan Hospital Talent Development Program during the 14th Five-Year Plan,No.2023 LJRCLFQ.
文摘BACKGROUND Wedged hepatic venous pressure(WHVP)is a crucial variable for accurately assessing the hepatic venous pressure gradient(HVPG)and is vital for the diagnosis and prognostic evaluation of patients with portal hypertension(PH).AIM To investigate the anatomical characteristics of balloon-occluded hepatic venous angiography in patients with PH and analyze the relationship between the WHVP and portal venous pressure(PVP).METHODS This retrospective study included 877 patients with PH who met the inclusion criteria from January 2020 to June 2024.Routine and innovative hepatic venous angiography was performed during transjugular intrahepatic portosystemic shunt procedures to measure hepatic venous and PVPs.All patients'angiographic images were collected for analysis.The associations between WHVP and PVP in each group were analyzed via linear regression analysis,and a predictive model was established.RESULTS The 877 patients had a mean age of 52.6±13.0 years,with 582 males and 295 females.Patients were categorized into four groups on the basis of their anatomical structure.All groups showed strong correlations between WHVP and PVP.The regression coefficient between the WHVP and PVP in the hepatic right vein-portal venous angiography group was 0.884(P<0.05);in the hepatic right vein-accessory hepatic venous angiography group,it was 0.721(P<0.05);in the hepatic right vein-middle hepatic venous angiography group,it was 0.344(P<0.05);and in the hepatic right vein-nonangiography group,it was 0.293(P<0.05).CONCLUSION The presence and anatomical classification of hepatic venous collaterals are key factors influencing the relationship between WHVP with and PVP.Based on the different anatomical classifications of hepatic veins,WHVP can be used to estimate PVP,improving the accuracy of PVP prediction.
文摘Seismic quantitative reservoir simulations and characterizations have played a vital role in exploring stratigraphic traps,such as lateaggradational lowstands prograding wedge systems(LPWS)within lowstands systems tracts(LST).However,seismic data acquisition operations are always dominated by exceptional seismic coherent noise events,e.g.,multiples,which reduce the signal strengths of the sourcegenerated incident seismic waves within vertically and laterally heterogeneous earth systems.Hence,these noise events create hurdles in predicting paleo-depositional impedance(PDI),paleo-thickness(PTS),paleo-dense fractured networks,erosional and depositional zones,faultcontrolled migrations,and types of seismic reflection configurations(SRFC),which are key elements in developing stratigraphic pinch-out traps.This research utilizes the state-of-the-art technologies of spectral wavelet-based instantaneous time-frequency analysis and seismic waveform frequency-controlled porosity-constrained static reservoir simulation(FDPVS)tools to quantify the LPWS inside the Onshore Basin,Pakistan.The use of conventional amplitude-based seismic attributes,such as the average energy,remained a better tool for deciphering the overall geological architecture of the LPWS.Conventional FDPVS realizations resolved a PDI of−1.391 gm./c.c.^(*)m/s to−0.97 gm./c.c.^(*)m/s for LPWS with PTS of 12 and 20 m,respectively.A 0.9 km lateral extent of paleo-dense fractured networks(PDFN)with a strong linear regression R^(2)=0.93 was also resolved.Average energy attribute-based instantaneous frequency FDPVS realizations enabled the imaging of parallel-toprograding SRFC with resolved magnitudes of−0.259 gm./c.c.^(*)m/s for PDI,20 m for PTS,and 0.73 km for PDFN with linear regression transforms at R^(2)=0.92,which indicates the deposition of onlap fill facies inside the LPWS during extensive sea-level fall.These realizations have also resolved frequency-controlled fault migrations on 27-Hz spectral waveform-based amplitude plots with 2.174 gm./c.c.^(*)m/s PDI for conduit fault systems and 27-Hz with 0.585 gm./c.c.^(*)m/s PDI for sealing fault systems.All these structural configurations are completely sealed up by transgressive seals of transgressive systems tracts and,hence,developed into pure stratigraphic-based oil and gas plays.This research has strong implications for side-tracking drilling locations and provides an analogue for basins with similar geology and stratigraphy worldwide.
基金supported by National Key Research and Development Program of China(No.2022YFE0123700)National Natural Science Foundation of China(Grant No.52275307)the Engineering Research Center of Part Rolling,Ministry of Education,China.
文摘304 stainless steel(SS)/Q235 carbon steel(CS)bimetallic composite shafts were prepared by the cross wedge rolling(CWR).The bonding interface welding mechanism was investigated through CWR rolling experiments and finite element simulation,as well as element diffusion,microstructure analysis,and mechanical property tests.According to simulation studies,the bonding interface is primarily subjected to three-directional compressive stresses at the tool-workpiece contact zone.As compression ratio increases from 0.25 to 0.35,the interface of the stress penetration area increases,while the diameter and wall thickness of CS/SS bimetallic shaft decrease,and hence,thickness-to-diameter ratio remains unchanged,which is conducive to the coordinated deformation of inner and outer metals and the interface of welded joints.The microstructure analysis of the interface shows that there are no obvious defects and cracks in the attachment,and that the microstructure on CS side is dominated by ferrite and martensite phases.Caused by the decarburization effect,Q235 steel microstructure features coarse ferrite,accompanied by a carburized layer with a thickness of about 20μm on SS side near the interface where grains are refined.As radial compression ratio increases,the diffusion distance of Cr,Ni,and other elements increases,the average thickness of the decarburized layer decreases,the interfacial bonding strength increases from 450 to 490 MPa,and metallurgical bonding at the interface is thus improved.The study demonstrates that it is feasible to use 304 SS and Q235 CS for cross wedge rolling composite shafts.
基金funded by the National Natural Science Foundation of China(No.42076069).
文摘The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the formation mechanism of shallow normal faults, remain unclear. Meanwhile, the factors affecting the continuity of plane faults must be comprehensively discussed. Clarifying the development characteristics and deformation mechanisms of the Makran accretionary wedge is crucial to effectively guide the exploration of gas hydrate deposits in the area. This study aims to interpret seismic data to identify typical structures in the Makran accretionary wedge, including deep imbricate thrust faults, shallow and small normal faults, wedge-shaped piggyback basins, mud diapirs with fuzzy and disorderly characteristics of reflection, décollements with a northward tilt of 1° – 2°, and large seamounts. Physical simulation-based experiments are performed to comprehensively analyze the results of the plane, section, and slices of the wedge. Results reveal that the distances between and shapes of thrust faults in the deep parts of the Makran accretionary wedge are controlled by the bottom décollement. The uplift of the thrust fault-related folds and the upwelling of the mud diapirs primarily contribute to the formation of small normal faults in the shallow part of the area. The mud diapirs originate from plastic material at the bottom, while those that have developed in the area near the trench are larger. Seamounts and mud diapirs break the continuity of fault plane distribution.
基金supported by the National Natural Science Foundation of China (Grant No.52305405)the Natural Science Foundation Research Program of Shanxi Province (Grant No.202203021222121)+4 种基金the Major Project of Science and Technology of Shanxi Province (Grant No.20181102016)the Chinese Postdoctoral Science Foundation (Grant No.2021M702544)the Central Government Guides the Special Fund Projects of Local Scientific and Technological Development (YDZX20191400002149)the Open Project of Research Institute of Hai'an-Taiyuan University of Technology (Grant No.2023HA-TYUTKFYF008)the School Fund of Taiyuan University of Technology (Grant No.2022QN007).
文摘To overcome the inaccuracy problem of the traditional wedge evaluation of steel plates and strips caused by the ran-domness of the thicknesses of two local points and improve the reliability of the wedge index,the double-centroid method for the wedge evaluation was proposed,and a model based on the centroid theory was established.Meanwhile,an integral model for the discrete thickness values of the cross-section profiles was derived.The discussion focused on the distinct characteristics of the two-point method,asymmetric method,and double-centroid method in evaluating the asymmetric distribution of cross-sections.The three methods were employed to evaluate the wedge values of both the theoretical and measured cross-sections of steel plates and strips,and the accuracies of three wedge evaluation models were analyzed and discussed.The results showed that the double-centroid method objectively reflects the degree and variation characteristics of the wedge values of the cross-sections of steel plates and strips,and this method is feasible,reliable,and outstanding.
基金Supported by Jiangsu Provincial Administration of Traditional Chinese Medicine,No.MS2023017 and No.SLJ0311the Jiangsu Provincial Health Commission,No.ZDXK202251.
文摘BACKGROUND Gastroesophageal junction(GEJ)or gastrointestinal stromal tumor(GIST)are located in unfavorable parts of the stomach,due to the anatomical complexity of these regions,protecting the cardia while ensuring R0 resection is a major challenge for surgeons.CASE SUMMARY Two cases of GEJ stromal tumors were reported.Abdominal computed tomography scans revealed that both tumors were located at the GEJ,close to the posterior wall,with one tumor measuring greater than 5 cm.Both patients successfully underwent robot-assisted laparoscopic wedge resection of the stomach.The surgeries achieved R0 resection while preserving the cardia sphincter and maximizing gastric tissue preservation.Postoperatively,no symptoms such as gastroesophageal reflux or cardia stenosis were observed.Case 1:Postoperative pathology:GIST.Immunohistochemical results:Tumor cells were positive for CD34,CD117,and DOG1,and negative for SMA,desmin,S-100,and SDHB(normal expression).The Ki-67 proliferation index was approximately 5%.Case 2:Postoperative pathology:GIST.Immunohistochemical results:Tumor cells were positive for CD117(++),CD34(++),DOG1(+++),and focal positivity for SMA.Negative for desmin,S-100(few cells positive),and SDHB(preserved expression).The Ki-67 proliferation index was approximately 10%.CONCLUSION The gastric tube-guided robotic-assisted laparoscopic resection is a safe and effective method for tumor resection while preserving the cardia,and it is worth further promotion in clinical practice.
基金Tokyo Metropolitan Government,Grant/Award Number:Advanced Research Grant Number(R4-2)。
文摘The present study describes a river channel management method for restoring riverine environments degraded by sand mining in rivers.Specifically,three conditions that must be met for a restored river channel in the lower reach of the Kelani River in Sri Lanka were proposed:(1)flood discharge capacity of the channel for a given flood,(2)prevention of saltwater intrusion,and(3)creation of a diverse physical environment.The allowable mining volume satisfies the three conditions,while continuing to mine sand was discussed based on the sediment budget calculations in the target river reach.In this case,the amount of sediment stored in the target reach and its variation are determined by the amount of sediment supplied to the target reach,the amount of sediment discharged from the target reach to the sea,and the amount of sediment excavated.This means that the dynamic equilibrium channel of the target reach is determined by the amount of sediment supplied and the amount of sediment excavated.The amount of sand mined when the dynamic equilibrium channel meets the three conditions of the restored channel is a candidate for the allowable amount of sand mined.One of these,the most desirable one,is set as the allowable mining volume.As described above,we proposed a method to develop a restoring reach taking the sediment budget and associated hydraulic and hydro morphological conditions in the target reach into consideration.
文摘Passive-roof duplexes accommodate shortening at the mountain front of many fold-and-thrust belts worldwide.These structures typically manifest at the surface by hinterland-verging backthrusts that decouple thin-skinned thrust sheets from underlying foreland-verging duplexes.Although the main fac-tors controlling the development of passive-roof duplexes have mostly been identified,some of their intrinsic characteristics are still poorly defined.These relate to their spatio-temporal relationships to thrust faults located further inland in orogens,and their ability to transport younger rocks over older ones.This study explores these issues in the Casentino-Romagna axial sector of the Northern Apennines,which expose regional forethrusts and backthrusts.Detailed field mapping and analysis of superposed tectonic structures were integrated with apatite fission-track dating for constraining the tim-ing of rock exhumation and correlated tectonic events.Collectively,the results have allowed us to inter-pret the evolution of the study area in terms of two main deformation stages.Specifically,a first,long phase(D_(1))progressed from NE-directed,in-sequence thrusting(∼18 to∼10-9 Ma)to late out-of-sequence thrusting(∼8-5 Ma).A successive deformation phase,that we refer to as D_(2)(∼4-2 Ma),con-sisted of backthrusts and associated folds that were ubiquitous and systematically overprinted onto the foreland-verging D_(1)structures.Such retrovergent structures identify a late deformation phase dom-inated by the development of passive-roof duplexes that propagated hinterlandward into the orogen up to beyond the primary watershed ridge.Orogen-scale processes controlled the evolution of forelandward D_(1)-phase thrusts,although late erosion could have played a major role by bringing the Apennine thrust wedge toward an undercritical state.The latter conditions could have contributed to keeping the out-of-sequence thrusts active,and eventually promoted the development of the D_(2)passive-roof duplexes.
基金Supported by the National Natural Science Foundation of China(Nos.42176068,42476063,92058213,42376081,42121005)。
文摘Island-arc magmatism is a crucial process in the Earth’s crustal growth.However,how the island-arc magma production rate(MPR)changes and the key influencing factors remains unclear.This study employs numerical models to simulate island-arc growth,incorporating slab dehydration,mantle hydration and melting,and melt extraction.In addition,the impacts of convergence rate and slab dip angle on island-arc magma production were studied.Results suggest that,(1)MPR increases with higher convergence rates;high convergence rates enhance slab water transport efficiency and mantle wedge convection,thereby promoting water fraction and temperature in potential molten regions;(2)MPR initially rises and then falls as the slab dip angle varies from 30°to 45°,and to 60°.This variation is closely tied to water content in the wedge rather than mantle temperature.However,a higher slab dip promotes dehydration towards the potential-melting mantle wedge,which causes water to ascend to shallow areas and reduces the area of the potential molten region.Ultimately,a dip angle of 45°is optimal for retaining the most suitable water fraction and mantle wedge area,thereby maintaining the largest MPR;(3)convergence rate variation has a much larger influence on magma production rate than dip angle variation.When the convergence rate varies from 2 to 10 cm/a,the largest time-averaged MPR is 64.0 times the smallest one,whereas when the slab dip varies from 30°to 60°,the largest time-averaged MPR is only 3.5 times the smallest one.These findings align with numerous instances observed in modern-day subduction zones.
基金supported by NSFC research Grant 42274200National Key R&D Program of China 2023YFC2808900the International Space Science Institute(ISSI)in Bern,through ISSI International Team project#24-628-Precipitation of Energetic Particles from Magnetosphere and Their Effects on the Atmosphere.
文摘Geomagnetic substorms release plasma and energy from the magnetotail to the inner magnetosphere and high latitude ionosphere.In this study,we investigate substorms of different time duration,observed during the years 1982 to 2012.We measure substorm duration by a method based on the SME index.Our results demonstrate that longer-duration substorms occur more frequently during solar maximum years,and more frequently between the months of May and July,likely due to the higher polar ionospheric conductivity and more sunward geomagnetic pole directions during summer in the northern hemisphere.Additionally,longer substorms occur more frequently under stronger,longer-lasting southward IMF,and are accompanied by slower solar winds,suggesting that extended magnetic reconnection is required to drive longer substorms.Substorm durations are not significantly related to the minimum SML index,but longer substorms usually have higher SMU and continuously rising PC indices.The SME indices of long-duration substorms show a bimodal MLT distribution located near midnight and dusk after substorm onset,with the peak originally at midnight moving eastward to the morning side during the late recovery phase.Longer duration substorms have a stronger effect on the overall ring current at all MLT sectors except dawnside.Our results provide new insights into the development process and influencing factors of substorms,from the expansion phase to the recovery phase.
文摘The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.
文摘A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.
文摘When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H2/O2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (KFJJ09-13)
文摘An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to capture the shock wave.The numerical results show that with the compression of the wedge wall the detonation wave front structure is divided into three sections:the ZND model-like strcuture,single-sided triple point structure and dual-headed triple point strucuture.The first structure is the smooth straight,and the second has the characteristic of the triple points propagating dowanstream only with the same velocity,while the dual-headed triple point structure is very complicated.The detonation waves facing upstream and downstream propagate with different velocities,in which the periodic collisions of the triple points cause the oscillation of the detonation wave front.This oscillation process has temporal and spatial periodicity.In addition,the triple point trace are recorded to obtain different cell structures in three sections.
基金supported by the National Natural Science Foundation of China(No.11822202)。
文摘Pressure-gain combustion has gained attention for airbreathing ramjet engine applications owing to its better thermodynamic efficiency and fuel consumption rate. In contrast with traditional detonation induced by a single wedge, the present study considers oblique shock interactions attached to double wedges in a hypersonic combustible flow. The temperature/pressure increases sharply across the interaction zone that initiates an exothermic reaction, finally resulting in an Oblique Detonation Wave(ODW). Compared with the case for a single-wedge ODW, the double-wedge geometry has great potential to control the initiation of the ODW. As a tentative study, two-dimensional compressible Euler equations with a two-step induction-reaction kinetic model are used to solve the detonation dynamics triggered by a double wedge. The effects of the wedge angles and wedge corner locations on the initiation structures are investigated numerically.The results show an ODW complex comprising three Oblique Shock Waves(OSWs), an induction zone, a curved detonation front, and an unburned/low-temperature gas belt close to the surface of the second wedge. Both the increasing wedge angle and downstream wedge corner location lead to an abrupt OSW–ODW transition type, whereas the former corresponds to the shock–shock interaction and the later has a greater effect on the exothermic chemical process. Analysis of the shock polar and flow scale confirms that the OSW–ODW initiation structure mainly depends on the coupling of shocks and heat release in a confined initiation zone.
基金National Natural Science Foundation of China under Grants (51278327)the Tianjin Research Program of Application Foundation and Advanced Technology (14JCYBJC21900)
文摘The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and effi- ciently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.