This paper describes a case study of 3D protein structure prediction of six sequences from protein data bank (PDB) by genetic algorithm and tabu search (GATS), where off-lattice AB model is considered as a simplif...This paper describes a case study of 3D protein structure prediction of six sequences from protein data bank (PDB) by genetic algorithm and tabu search (GATS), where off-lattice AB model is considered as a simplified model of protein structure. The lowest-energy values required for forming the native conformation of proteins are searched by GATS, and then the coarse structures (i.e., simplified structure) of the proteins are obtained according to the multiple angle parameters corresponding to the lowest energies. All the coarse structures form single hydrophobic cores surrounded by hydrophilic residues, which stay on the right side of the actual characteristic of protein structure. It demonstrates that this approach can predict the 3D protein structure effectively.展开更多
This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This pose...This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This poses a challenge since inserting random amount of watermark in all the vertices of the model would generally introduce perceptible distortion. The proposed algorithm overcomes this challenge by using genetic algorithm to modify every vertex location in the model so that there is no perceptible distortion. Various experimental results are used to justify the choice of the genetic algorithm design parameters. Experimental results also indicate that the proposed algorithm can accurately detect location of any mesh modification.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of c...This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of chiral cell nodal circles while improving load transmission efficiency and enhancing manufacturing precision for 3D printing applications.A parametric design framework,integrating finite element analysis and optimization modules,is developed to enhance the wing’s multidirectional stiffness.The optimization process demonstrates that the distribution of chiral structural ligaments and nodal circles significantly affects wing deformation.The stiffness gradient optimization results reveal a variation of over 78%in tail stiffness performance between the best and worst parameter combinations.Experimental outcomes suggest that this strategy can develop metamaterials with enhanced deformability,offering a promising approach for designing morphing wings.展开更多
A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design(Q3DHD), the boundary vortex flux(BVF) diagnosis, and the genetic algorithm(GA). The...A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design(Q3DHD), the boundary vortex flux(BVF) diagnosis, and the genetic algorithm(GA). The BVF diagnosis based on the Q3DHD is used to evaluate the objection function. Numerical simulations and hydraulic performance tests are carried out to compare the impeller designed only by the Q3DHD method and that optimized by the presented method. The comparisons of both the flow fields simulated under the same condition show that(1) the pressure distribution in the optimized impeller is more reasonable and the gas-liquid separation is more efficiently inhibited,(2) the scales of the gas pocket and the vortex decrease remarkably for the optimized impeller,(3) the unevenness of the BVF distributions near the shroud of the original impeller is effectively eliminated in the optimized impeller. The experimental results show that the differential pressure and the maximum efficiency of the optimized impeller are increased by 4% and 2.5%, respectively. Overall, the study indicates that the optimization design method proposed in this paper is feasible.展开更多
The product of high complex profile,high strength,high productivity and excellent material properties with infinite length can be produced by Continuous Extrusion(CE)process.The numerical simulation of Aluminum(AA 110...The product of high complex profile,high strength,high productivity and excellent material properties with infinite length can be produced by Continuous Extrusion(CE)process.The numerical simulation of Aluminum(AA 1100)feedstock material at different wheel velocities,product diameter,feedstock temperature,die temperature and friction condition has been carried out using 3D simulation tool Design Environment for Forming(DEFORM-3D)in this paper.The development of mathematical model is carried out to investigate the influence of wheel velocity,extrusion ratio,feedstock temperature,die temperature and friction conditions on total load required for the deformation and extrusion of feedstock material through Response Surface Methodology(RSM).The statistical significance of mathematical model is verified through analysis of variance(ANOVA).The most optimum value of extrusion load has been found to be 136.4 kN through iterative process of Genetic Algorithm(GA)using Artificial Neural Network(ANN).The optimized value of input process variables for minimum value of extrusion load obtained has been found to be 13 Revolutions per Minute(RPM)as wheel velocity,5 mm as product diameter,0.95 as friction condition,650◦C as feedstock temperature and 550◦C as die temperature.This paper with proposed methodology will be helpful for industries working in the area of CE in terms of minimizing energy consumption during production process of bus bars,tubes,wires,cables,sheets,plates,strips,etc.展开更多
In this paper, we present a new technique of 3D face reconstruction from a sequence of images taken with cameras having varying parameters without the need to grid. This method is based on the estimation of the projec...In this paper, we present a new technique of 3D face reconstruction from a sequence of images taken with cameras having varying parameters without the need to grid. This method is based on the estimation of the projection matrices of the cameras from a symmetry property which characterizes the face, these projections matrices are used with points matching in each pair of images to determine the 3D points cloud, subsequently, 3D mesh of the face is constructed with 3D Crust algorithm. Lastly, the 2D image is projected on the 3D model to generate the texture mapping. The strong point of the proposed approach is to minimize the constraints of the calibration system: we calibrated the cameras from a symmetry property which characterizes the face, this property gives us the opportunity to know some points of 3D face in a specific well-chosen global reference, to formulate a system of linear and nonlinear equations according to these 3D points, their projection in the image plan and the elements of the projections matrix. Then to solve these equations, we use a genetic algorithm which consists of finding the global optimum without the need of the initial estimation and allows to avoid the local minima of the formulated cost function. Our study is conducted on real data to demonstrate the validity and the performance of the proposed approach in terms of robustness, simplicity, stability and convergence.展开更多
Upper stage solid rocket motors (SRMS) for launch vehicles require a highly efficient propulsion system. Grain design proves to be vital in terms of minimizing inert mass by adopting a high volumetric efficiency wit...Upper stage solid rocket motors (SRMS) for launch vehicles require a highly efficient propulsion system. Grain design proves to be vital in terms of minimizing inert mass by adopting a high volumetric efficiency with minimum possible sliver. In this arti- cle, a methodology has been presented for designing three-dimensional (3D) grain configuration of radial slot for upper stage solid rocket motors. The design process involves parametric modeling of the geometry in computer aided design (CAD) software through dynamic variables that define the complex configuration. Grain bum back is achieved by making new surfaces at each web increment and calculating geometrical properties at each step. Geometrical calculations are based on volume and change-in-volume calculations. Equilibrium pressure method is used to calculate the internal ballistics. Genetic algorithm (GA) has been used as the optimizer because of its robustness and efficient capacity to explore the design space for global optimum solution and eliminate the requirement of an initial guess. Average thrust maximization under design constraints is the objective function.展开更多
In conventional manufacturing processes of composites, Carbon Fibre Reinforced Plastic (CFRP) laminates have been made by stacking unidirectional or woven prepreg sheets. Recently, as a manufacturing process of CFRP, ...In conventional manufacturing processes of composites, Carbon Fibre Reinforced Plastic (CFRP) laminates have been made by stacking unidirectional or woven prepreg sheets. Recently, as a manufacturing process of CFRP, 3D printing of CFRP composites has been developed. The 3D printing process of CFRP composites enables us to fabricate CFRP laminates with arbitrary curvilinear fibre plies. This indicates that the optimization of the in-plane curved carbon fibre placement in a planar ply is strongly required to realize superior 3D printed composites. In the present paper, in-plane curved carbon fibre alignment of a ply with an open hole is optimized in terms of maximization of the fracture strength. For the optimization process, a genetic algorithm is adopted. To describe curved carbon fibre alignments in a planar ply, stream lines of perfect flow is employed. By using the stream lines of the perfect flow, number of optimization parameters is significantly reduced. After the optimization, the fracture strength of CFRP laminate is compared with the results of unidirectional CFRP ply. The curved fibre placement in a planar ply shows superior fracture improvement.展开更多
基金Supported by the National Natural Science Foundation of China (60975031)the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China, the Open Foundation of State Key Laboratory of Bioelectronics of Southeast University, China, and the Natural Science Foundation of Hubei Province, China (2008CDB344 and 2009CDA034)
文摘This paper describes a case study of 3D protein structure prediction of six sequences from protein data bank (PDB) by genetic algorithm and tabu search (GATS), where off-lattice AB model is considered as a simplified model of protein structure. The lowest-energy values required for forming the native conformation of proteins are searched by GATS, and then the coarse structures (i.e., simplified structure) of the proteins are obtained according to the multiple angle parameters corresponding to the lowest energies. All the coarse structures form single hydrophobic cores surrounded by hydrophilic residues, which stay on the right side of the actual characteristic of protein structure. It demonstrates that this approach can predict the 3D protein structure effectively.
文摘This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This poses a challenge since inserting random amount of watermark in all the vertices of the model would generally introduce perceptible distortion. The proposed algorithm overcomes this challenge by using genetic algorithm to modify every vertex location in the model so that there is no perceptible distortion. Various experimental results are used to justify the choice of the genetic algorithm design parameters. Experimental results also indicate that the proposed algorithm can accurately detect location of any mesh modification.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075026 and 52192632)the Fundamental Research Funds for the Central Universities(Grant No.YWF-22-L-1119)。
文摘This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of chiral cell nodal circles while improving load transmission efficiency and enhancing manufacturing precision for 3D printing applications.A parametric design framework,integrating finite element analysis and optimization modules,is developed to enhance the wing’s multidirectional stiffness.The optimization process demonstrates that the distribution of chiral structural ligaments and nodal circles significantly affects wing deformation.The stiffness gradient optimization results reveal a variation of over 78%in tail stiffness performance between the best and worst parameter combinations.Experimental outcomes suggest that this strategy can develop metamaterials with enhanced deformability,offering a promising approach for designing morphing wings.
基金Project supported by the National Natural Science Foundation of China(Grant No.51209217)
文摘A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design(Q3DHD), the boundary vortex flux(BVF) diagnosis, and the genetic algorithm(GA). The BVF diagnosis based on the Q3DHD is used to evaluate the objection function. Numerical simulations and hydraulic performance tests are carried out to compare the impeller designed only by the Q3DHD method and that optimized by the presented method. The comparisons of both the flow fields simulated under the same condition show that(1) the pressure distribution in the optimized impeller is more reasonable and the gas-liquid separation is more efficiently inhibited,(2) the scales of the gas pocket and the vortex decrease remarkably for the optimized impeller,(3) the unevenness of the BVF distributions near the shroud of the original impeller is effectively eliminated in the optimized impeller. The experimental results show that the differential pressure and the maximum efficiency of the optimized impeller are increased by 4% and 2.5%, respectively. Overall, the study indicates that the optimization design method proposed in this paper is feasible.
文摘The product of high complex profile,high strength,high productivity and excellent material properties with infinite length can be produced by Continuous Extrusion(CE)process.The numerical simulation of Aluminum(AA 1100)feedstock material at different wheel velocities,product diameter,feedstock temperature,die temperature and friction condition has been carried out using 3D simulation tool Design Environment for Forming(DEFORM-3D)in this paper.The development of mathematical model is carried out to investigate the influence of wheel velocity,extrusion ratio,feedstock temperature,die temperature and friction conditions on total load required for the deformation and extrusion of feedstock material through Response Surface Methodology(RSM).The statistical significance of mathematical model is verified through analysis of variance(ANOVA).The most optimum value of extrusion load has been found to be 136.4 kN through iterative process of Genetic Algorithm(GA)using Artificial Neural Network(ANN).The optimized value of input process variables for minimum value of extrusion load obtained has been found to be 13 Revolutions per Minute(RPM)as wheel velocity,5 mm as product diameter,0.95 as friction condition,650◦C as feedstock temperature and 550◦C as die temperature.This paper with proposed methodology will be helpful for industries working in the area of CE in terms of minimizing energy consumption during production process of bus bars,tubes,wires,cables,sheets,plates,strips,etc.
文摘In this paper, we present a new technique of 3D face reconstruction from a sequence of images taken with cameras having varying parameters without the need to grid. This method is based on the estimation of the projection matrices of the cameras from a symmetry property which characterizes the face, these projections matrices are used with points matching in each pair of images to determine the 3D points cloud, subsequently, 3D mesh of the face is constructed with 3D Crust algorithm. Lastly, the 2D image is projected on the 3D model to generate the texture mapping. The strong point of the proposed approach is to minimize the constraints of the calibration system: we calibrated the cameras from a symmetry property which characterizes the face, this property gives us the opportunity to know some points of 3D face in a specific well-chosen global reference, to formulate a system of linear and nonlinear equations according to these 3D points, their projection in the image plan and the elements of the projections matrix. Then to solve these equations, we use a genetic algorithm which consists of finding the global optimum without the need of the initial estimation and allows to avoid the local minima of the formulated cost function. Our study is conducted on real data to demonstrate the validity and the performance of the proposed approach in terms of robustness, simplicity, stability and convergence.
文摘Upper stage solid rocket motors (SRMS) for launch vehicles require a highly efficient propulsion system. Grain design proves to be vital in terms of minimizing inert mass by adopting a high volumetric efficiency with minimum possible sliver. In this arti- cle, a methodology has been presented for designing three-dimensional (3D) grain configuration of radial slot for upper stage solid rocket motors. The design process involves parametric modeling of the geometry in computer aided design (CAD) software through dynamic variables that define the complex configuration. Grain bum back is achieved by making new surfaces at each web increment and calculating geometrical properties at each step. Geometrical calculations are based on volume and change-in-volume calculations. Equilibrium pressure method is used to calculate the internal ballistics. Genetic algorithm (GA) has been used as the optimizer because of its robustness and efficient capacity to explore the design space for global optimum solution and eliminate the requirement of an initial guess. Average thrust maximization under design constraints is the objective function.
文摘In conventional manufacturing processes of composites, Carbon Fibre Reinforced Plastic (CFRP) laminates have been made by stacking unidirectional or woven prepreg sheets. Recently, as a manufacturing process of CFRP, 3D printing of CFRP composites has been developed. The 3D printing process of CFRP composites enables us to fabricate CFRP laminates with arbitrary curvilinear fibre plies. This indicates that the optimization of the in-plane curved carbon fibre placement in a planar ply is strongly required to realize superior 3D printed composites. In the present paper, in-plane curved carbon fibre alignment of a ply with an open hole is optimized in terms of maximization of the fracture strength. For the optimization process, a genetic algorithm is adopted. To describe curved carbon fibre alignments in a planar ply, stream lines of perfect flow is employed. By using the stream lines of the perfect flow, number of optimization parameters is significantly reduced. After the optimization, the fracture strength of CFRP laminate is compared with the results of unidirectional CFRP ply. The curved fibre placement in a planar ply shows superior fracture improvement.