期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Web-Log Mining的Web文档聚类 被引量:29
1
作者 苏中 马少平 +1 位作者 杨强 张宏江 《软件学报》 EI CSCD 北大核心 2002年第1期99-104,共6页
速度和效果是聚类算法面临的两大问题.DBSCAN(density based spatial clustering of applications with noise)是典型的基于密度的一种聚类方法,对于大型数据库的聚类实验显示了它在速度上的优越性.提出了一种基于密度的递归聚类算法(re... 速度和效果是聚类算法面临的两大问题.DBSCAN(density based spatial clustering of applications with noise)是典型的基于密度的一种聚类方法,对于大型数据库的聚类实验显示了它在速度上的优越性.提出了一种基于密度的递归聚类算法(recursive density based clustering algorithm,简称RDBC),此算法可以智能地、动态地修改其密度参数.RDBC是基于DBSCAN的一种改进算法,其运算复杂度和DBSCAN相同.通过在Web文档上的聚类实验,结果表明,RDBC不但保留了DBSCAN高速度的优点,而且聚类效果大大优于DBSCAN. 展开更多
关键词 数据库 聚类 数据挖掘 WEB 文档 web-logmining
在线阅读 下载PDF
基于Web-Log Mining的N元预测模型 被引量:14
2
作者 苏中 马少平 +1 位作者 杨强 张宏江 《软件学报》 EI CSCD 北大核心 2002年第1期136-141,共6页
随着Web上用户访问信息的不断增加,特别是Web服务器可提供大量的日志文件,使得有可能对这些大数据集进行知识挖掘,例如,对用户未来的访问进行预测.提出了一种利用服务器日志文件,运用N元(N-gram)预测模型对用户未来可能进行的Web访问请... 随着Web上用户访问信息的不断增加,特别是Web服务器可提供大量的日志文件,使得有可能对这些大数据集进行知识挖掘,例如,对用户未来的访问进行预测.提出了一种利用服务器日志文件,运用N元(N-gram)预测模型对用户未来可能进行的Web访问请求进行预测.这种模型会选择性地对用户可预测的请求进行预测,从而大大提高了预测精度.实验证明,在自然语言中普遍适用的N元预测模型同样适用于网页预测.同时,采用了一种有效的简化手段,大大压缩了模型的大小,使得5元模型和传统的2元模型大小基本相同,而预测精度提高了1倍.该结果可以广泛地运用到Web上,包括网页的预发送、预取、推荐以及Web上的caching机制.试验是建立在真实的Web日志上的,该算法无论在预测精度上还是在可适用度上都优于以往的算法. 展开更多
关键词 数据挖掘 INTERNET web-logmining N元预测模型 网页
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部