Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a...Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.展开更多
由于序列模式挖掘需要花费大量计算时间,并需要占用大量存储空间.减少计算量、节省存储空间开销成为序列模式挖掘的关键.因PrefixSpan算法不产生候选,而适当应用Bitmap数据结构可避免重复扫描数据库,基于此,本文提出了BM-PrefixSpan算法...由于序列模式挖掘需要花费大量计算时间,并需要占用大量存储空间.减少计算量、节省存储空间开销成为序列模式挖掘的关键.因PrefixSpan算法不产生候选,而适当应用Bitmap数据结构可避免重复扫描数据库,基于此,本文提出了BM-PrefixSpan算法,用于序列模式挖掘,设计并构造了PFPBM(Prefix of First Position on BitMap)表用于记录序列中的每个项在位图中第1次出现的位置.实验结果表明,BM-PrefixSpan算法综合了PrefixSpan和SPAM算法的优点,能够更快、更好地挖掘出序列模式.展开更多
Web用户聚类是通过分析用户会话,将具有相同或相似访问特征的用户聚为一类。在会话相似性度量方面综合考虑了网页浏览时间和访问频次两个因素,并考虑到用户个人习惯、能力等因素对浏览时间的影响,将浏览时间处理为RDP(Reduce the Differ...Web用户聚类是通过分析用户会话,将具有相同或相似访问特征的用户聚为一类。在会话相似性度量方面综合考虑了网页浏览时间和访问频次两个因素,并考虑到用户个人习惯、能力等因素对浏览时间的影响,将浏览时间处理为RDP(Reduce the Differences in Personality)浏览时间,以降低其个性特征。为此,提出一种基于用户特性的RDPk-means聚类算法。实验表明,该算法可以有效实现用户会话的聚类,聚类结果客观合理。展开更多
引入正向、逆向Markov一步状态转移概率矩阵构造序列数据库,并将逐层投影的PrefixSpan序列挖掘算法改为伪投影和隔层投影算法结合,以改进经典序列算法中存在的时间或空间开销太大的缺陷。性能分析表明,与经典算法相比,这种基于Markov链...引入正向、逆向Markov一步状态转移概率矩阵构造序列数据库,并将逐层投影的PrefixSpan序列挖掘算法改为伪投影和隔层投影算法结合,以改进经典序列算法中存在的时间或空间开销太大的缺陷。性能分析表明,与经典算法相比,这种基于Markov链的Web访问序列模式挖掘新算法能够通过较少的计算量和空间复杂度获得较优的W e b访问序列模式。展开更多
基金Supported by the National Natural Science Foundation of China(60472099)Ningbo Natural Science Foundation(2006A610017)
文摘Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.
文摘由于序列模式挖掘需要花费大量计算时间,并需要占用大量存储空间.减少计算量、节省存储空间开销成为序列模式挖掘的关键.因PrefixSpan算法不产生候选,而适当应用Bitmap数据结构可避免重复扫描数据库,基于此,本文提出了BM-PrefixSpan算法,用于序列模式挖掘,设计并构造了PFPBM(Prefix of First Position on BitMap)表用于记录序列中的每个项在位图中第1次出现的位置.实验结果表明,BM-PrefixSpan算法综合了PrefixSpan和SPAM算法的优点,能够更快、更好地挖掘出序列模式.
文摘Web用户聚类是通过分析用户会话,将具有相同或相似访问特征的用户聚为一类。在会话相似性度量方面综合考虑了网页浏览时间和访问频次两个因素,并考虑到用户个人习惯、能力等因素对浏览时间的影响,将浏览时间处理为RDP(Reduce the Differences in Personality)浏览时间,以降低其个性特征。为此,提出一种基于用户特性的RDPk-means聚类算法。实验表明,该算法可以有效实现用户会话的聚类,聚类结果客观合理。
文摘引入正向、逆向Markov一步状态转移概率矩阵构造序列数据库,并将逐层投影的PrefixSpan序列挖掘算法改为伪投影和隔层投影算法结合,以改进经典序列算法中存在的时间或空间开销太大的缺陷。性能分析表明,与经典算法相比,这种基于Markov链的Web访问序列模式挖掘新算法能够通过较少的计算量和空间复杂度获得较优的W e b访问序列模式。