Web service is characterized by its isomerism and loose coupling;thus greatly facilitate the application of operation in distributed situation,but its disadvantages cause serious safety problems.The principium and cha...Web service is characterized by its isomerism and loose coupling;thus greatly facilitate the application of operation in distributed situation,but its disadvantages cause serious safety problems.The principium and characteristic of Web service classical attack technology are expatiated,classical attack techniques are classified,and attack technology is simulated,and then,the directions and the future of Web security are discussed.展开更多
在包括物联网(Internet of Things,IoT)设备的绝大部分边缘计算应用中,基于互联网应用技术(通常被称为Web技术)开发的应用程序接口(Application Programming Interface,API)是设备与远程服务器进行信息交互的核心。相比传统的Web应用,...在包括物联网(Internet of Things,IoT)设备的绝大部分边缘计算应用中,基于互联网应用技术(通常被称为Web技术)开发的应用程序接口(Application Programming Interface,API)是设备与远程服务器进行信息交互的核心。相比传统的Web应用,大部分用户无法直接接触到边缘设备使用的API,使得其遭受的攻击相对较少。但随着物联网设备的普及,针对API的攻击逐渐成为热点。因此,文中提出了一种面向物联网服务的Web攻击向量检测方法,用于对物联网服务收到的Web流量进行检测,并挖掘出其中的恶意流量,从而为安全运营中心(Security Operation Center,SOC)提供安全情报。该方法在对超文本传输协议(Hypertext Transfer Protocol,HTTP)请求的文本序列进行特征抽取的基础上,针对API请求的报文格式相对固定的特点,结合双向长短期记忆网络(Bidirectional Long Short-Term Memory,BLSTM)实现对Web流量的攻击向量检测。实验结果表明,相比基于规则的Web应用防火墙(Web Application Firewall,WAF)和传统的机器学习方法,所提方法针对面向物联网服务API的攻击具有更好的识别能力。展开更多
文摘Web service is characterized by its isomerism and loose coupling;thus greatly facilitate the application of operation in distributed situation,but its disadvantages cause serious safety problems.The principium and characteristic of Web service classical attack technology are expatiated,classical attack techniques are classified,and attack technology is simulated,and then,the directions and the future of Web security are discussed.
文摘在包括物联网(Internet of Things,IoT)设备的绝大部分边缘计算应用中,基于互联网应用技术(通常被称为Web技术)开发的应用程序接口(Application Programming Interface,API)是设备与远程服务器进行信息交互的核心。相比传统的Web应用,大部分用户无法直接接触到边缘设备使用的API,使得其遭受的攻击相对较少。但随着物联网设备的普及,针对API的攻击逐渐成为热点。因此,文中提出了一种面向物联网服务的Web攻击向量检测方法,用于对物联网服务收到的Web流量进行检测,并挖掘出其中的恶意流量,从而为安全运营中心(Security Operation Center,SOC)提供安全情报。该方法在对超文本传输协议(Hypertext Transfer Protocol,HTTP)请求的文本序列进行特征抽取的基础上,针对API请求的报文格式相对固定的特点,结合双向长短期记忆网络(Bidirectional Long Short-Term Memory,BLSTM)实现对Web流量的攻击向量检测。实验结果表明,相比基于规则的Web应用防火墙(Web Application Firewall,WAF)和传统的机器学习方法,所提方法针对面向物联网服务API的攻击具有更好的识别能力。