Since the end of 2019,the world has suffered from a pandemic of the disease called COVID-19.WHO reports show approximately 113M confirmed cases of infection and 2.5 M deaths.All nations are affected by this nightmare ...Since the end of 2019,the world has suffered from a pandemic of the disease called COVID-19.WHO reports show approximately 113M confirmed cases of infection and 2.5 M deaths.All nations are affected by this nightmare that continues to spread.Widespread fear of this pandemic arose not only from the speed of its transmission:a rapidly changing“normal life”became a fear for everyone.Studies have mainly focused on the spread of the virus,which showed a relative decrease in high temperature,low humidity,and other environmental conditions.Therefore,this study targets the effect of weather in considering the spread of the novel coronavirus SARS-CoV-2 for some confirmed cases in Iraq.The eigenspace decomposition technique was used to analyze the effect of weather conditions on the spread of the disease.Our theoretical findings showed that the average number of confirmed COVID-19 cases has cyclic trends related to temperature,humidity,wind speed,and pressure.We supposed that the dynamic spread of COVID-19 exists at a temperature of 130 F.The minimum transmission is at 120 F,while steady behavior occurs at 160 F.On the other hand,during the spread of COVID-19,an increase in the rate of infection was seen at 125%humidity,where the minimum spread was achieved at 200%.Furthermore,wind speed showed the most significant effect on the spread of the virus.The spread decreases with a wind speed of 45 KPH,while an increase in the infectious spread appears at 50 KPH.展开更多
[Objective] The paper aims to study the effect of weather on rice production in Guangxi. [Method] The authors evaluated the effect of weather and weather disasters in Guangxi on rice production by comparison and analy...[Objective] The paper aims to study the effect of weather on rice production in Guangxi. [Method] The authors evaluated the effect of weather and weather disasters in Guangxi on rice production by comparison and analysis in terms of temperature,rain and sunlight in 2009. [Result] The study summarized the main favorable and unfavorable weather conditions of rice growth,and proposed the measures and suggestions to tend to interest and avoid harm on rice production in Guangxi. [Conclusion] This study provides references to the evaluations about effect of weather in Guangxi on rice production and suggestions on how to reduce weather disasters influence and ensure rice production security.展开更多
1 Introduction Global climate change is one of the greatest challenges facing humankind in the 21st century.Studying,and utilising,the carbon sink caused by the weathering of silicate minerals has been a key research ...1 Introduction Global climate change is one of the greatest challenges facing humankind in the 21st century.Studying,and utilising,the carbon sink caused by the weathering of silicate minerals has been a key research focus for展开更多
We investigated the weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical regions of China. The investigation demonstrated that the weathering- pedogenesis of carbonate rocks is the pr...We investigated the weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical regions of China. The investigation demonstrated that the weathering- pedogenesis of carbonate rocks is the process of a joint action of corrosion and illuviation and metasomatism in subtropical region. It is characterized by multi-stage, multi-path and multi-style. With the persisting development of weathering-pedogenesis of carbonate rocks, metasomatic pedogenesis progressively became the main process of the weathering-pedogenesis and the dominant style of formation of minerals. And it proceeds through the whole process of evolution of the weathering-pedogenesis of carbonate rocks. The stage evolution of weathering-pedogenesis of carbonate rocks and the fractionation evolution of newly produced minerals are characterized by obvious vertically zoning structures and the rules of gradation of elements geochemical characteristics in the carbonate rocks weathering profiles. The geochemical process of weathering-pedogenesis of carbonate rocks can be divided into three geochemical evolution stages, i.e., the Ca, Mg-depletion and Si, Al-enrichment stage; the Fe, Mn enrichment stage and the Si-depletion and Al-enrichment stage in the subtropical regions. Consistent with the three geochemical evolution stages, the sequence of formation and evolution of minerals can be divided into the clay mineral stage; the Fe, Mn oxide and the gibbsite stage. The influence of weathering-pedogenesis of carbonate rocks on the chemical forms of heavy elements is mainly affected via newly produced components and minerals in the process of weathering-pedogenesis, e.g., iron oxide minerals and organic matters. The important mechanism for the mobilization, transport and pollution of F and As is affected the selective adsorption and desorption of F and As on the surface of iron oxide minerals in the subtropical karst zones, i.e., the selective adsorption and desorption on mineral surfaces of newly produced minerals in the process of weathering-pedogenesis control the geochemical behavior of elements on the Earth's surface and environmental quality in subtropical regions.展开更多
China has accumulated massive fine grained copper mine tailings stocks because of the past mining activities in this area. The tailings contain a variety of heavy metals, and the mass percent of Cu, which is one of th...China has accumulated massive fine grained copper mine tailings stocks because of the past mining activities in this area. The tailings contain a variety of heavy metals, and the mass percent of Cu, which is one of the main contaminants in tailings, is up to 0.2601% (analysis by XRF). The Cu can pollute soil and groundwater by rain leaching in the form of Cu(Ⅱ), furthermore ,the fine grained copper-ore-tailings can contaminant larger area by wind for its small granularity ( < 74 μm). The main cause of weathering of mine tailings is due to oxidative dissolution of sulfides. Microorganisms, such as Acidithiobacillus ferrooxidans, play an important role in weathering. These bacteria attach to exposed to mineral surfaces by excreting extracellular polymers and oxidize the sulfide mineral. Some of these bacteria also oxidize Fe2+ to Fe3+ which can chemically oxidize sulfide minerals. These reactions produce voluminous quantities of acid mine drainage and heavy metals which are harmful to the environment and human healthy. This study aims at finding the weathering effects of A. ferrooxidans to Cu(II) pollution of fine grained copper mine tailings, and our experiment applied indigenous A. ferrooxidans FJ-01 to leach the tailings. The optimum test parameters were obtained using shaking flask experiment and SEM observation under the following experimental conditions: 39 days residence time, pulp density 1%-15% (1%, 5% and 15%), 30℃, 120 rpm, pH between 1-3 and redox potential between 400-650 mV. The test results show that the leaching rate of Cu reached 43.1% when the pulp density was 1% after 33 days and kept invariant till the end of the test. In addition, the leaching rate of Cu will decrease as the increase of pulp density, and the maximum rate of 15% pulp density was only 12.5%. From the SEM, it can be seen that the fine grain of tailings flocculated to conglobation under the action of bacterial leaching.展开更多
Air pollution has ever become a global major public health problem.Previous studies showed that air pollution is associated with excessive mortality and morbidity of respiratory disease[1-2].The extreme weather temper...Air pollution has ever become a global major public health problem.Previous studies showed that air pollution is associated with excessive mortality and morbidity of respiratory disease[1-2].The extreme weather temperature can impact human health and the thermal stresses can lead not only to direct deaths and illnesses,but also to aggravation of respiratory disease[3-4].Though the independent展开更多
Soil moisture is an important parameter for the interaction between soil and atmosphere. It is the sec- ond important factor that influences climate change, next to sea surface temperature (SST). Most previous studi...Soil moisture is an important parameter for the interaction between soil and atmosphere. It is the sec- ond important factor that influences climate change, next to sea surface temperature (SST). Most previous studies focused on the monsoon regions in East China, and only a few laid emphases on arid environments. In Xinjiang, which is located in Northwest China, the climate is typically arid and semi-arid. During the past 20 years, the pre- cipitation in Xinjiang has shown a significant increasing trend, and it is closely related to oasis irrigation. This paper aims at discussing whether abnormal soil moisture in spring can be the signal to forecast summer precipitation. The effects of abnormal soil moisture due to farm irrigation in spring in arid environments on regional climate are inves- tigated by using a regional climate model (RegCM3). The results indicate that positive soil moisture anomaly in irrigated cropland surface in May led to an increase in precipitation in spring as well as across the whole summer. The impact could last for about four months. The effects of soil moisture on the surface air temperature showed a time-lagging trend. The summer air temperature declined by a maximum amplitude of 0.8℃. The increased soil moisture could enhance evaporation and ascending motion in the low troposphere, which brought in more precipi- tation. The soil moisture affected regional weather and climate mainly by altering the surface sensible and latent heat fluxes.展开更多
The linkage between the Arctic and midlatitudes has received much attention recently due to the rapidly changing climate.Many investigations have been conducted to reveal the relationship between the Arctic and Eurasi...The linkage between the Arctic and midlatitudes has received much attention recently due to the rapidly changing climate.Many investigations have been conducted to reveal the relationship between the Arctic and Eurasian extreme events from the perspective of climatological statistics.As a prediction source for extreme events in Eurasia,Arctic conditions are crucial for extreme event predictions.Therefore,it is urgent to explore the Arctic influence on the predictability of Eurasian extreme events due to the large uncertainties in Arctic conditions.Considering the sensitivity and nonlinearity of the atmospheric circulations in midlatitude to Arctic conditions,it is necessary to investigate the Arctic influences on Eurasian extreme weather events in case studies at weather time scales.Previous studies indicate that only perturbations in specific patterns have fast growth.Thus,the conditional nonlinear optimal perturbation approach is recommended for exploring the uncertainties in Arctic initial and boundary conditions and their synergistic effect on Eurasian extreme events.Moreover,the mechanism for extreme event formation may differ in different cases.Therefore,more extreme cases should be investigated to reach robust conclusions.展开更多
One natural process has since the origin of the Earth removed almost all the CO2 that was ever produced by volcanism. That process is the reaction of CO2 and water with rocks, a process known as weathering. It is a lo...One natural process has since the origin of the Earth removed almost all the CO2 that was ever produced by volcanism. That process is the reaction of CO2 and water with rocks, a process known as weathering. It is a logical choice to see if we can use the same process to remove also the vastly higher CO2 emissions caused by burning in a few hundred years the fossil fuels that have taken hundreds of millions of years for their formation. Many people claim that the rate of weathering of olivine is too slow to counter climate change, but they base this on experimental data in sterile laboratories, under exclusion of biotic and other environmental factors. As many conditions determine the weathering rate at each specific location, these laboratory conditions are irrelevant for the real world. Weathering models based on these laboratory data are off by orders of magnitude. Weathering experiments that use conditions closer to nature [1] show already much higher weathering rates. In this note I provide some data on the weathering of olivine in nature, which make clear that the weathering of olivine is fast enough to play an important role in the cycle of CO2 capture and its safe and sustainable storage as carbonate rocks. The CO2 released by volcanism has always been captured by the weathering of rocks since the origin of the Earth. Without this mechanism the Earth would be a lifeless planet with a CO2 atmosphere in the order of 100 bar, as our neighbor planet Venus demonstrates.展开更多
In recent years, the physical and chemical properties of dust aerosols from the dust source area in northem China have attracted increased attention. In this paper, Thermo RP 1400a was used for online continuous obser...In recent years, the physical and chemical properties of dust aerosols from the dust source area in northem China have attracted increased attention. In this paper, Thermo RP 1400a was used for online continuous observation and study of the hinterland of Taldimakan, Tazhong, and surrounding areas of Kurnul and Hotan from 2004 to 2006. In combination with weather analysis during a sandstorm in the Tazhong area, basic characteristics and influencing factors of dust aerosol PMl0 have been summarized as below: (1) The occurrence days of floating dust and blowing dust appeared with an increasing trend in Kumul, Tazhong and Hotan, while the number of dust storm days did not significantly change. The frequency and intensity of dust weather were major factors affecting the concentration of dust aerosol PMI0 in the desert. (2) The mass concentration of PM10 had significant regional distribution characteris- tics, and the mass concentration at the eastern edge of Taklimakan, Kumul, was the lowest; second was the southern edge of the desert, Hotan; and the highest was in the hinterland of the desert, Tazhong. (3) High values of PM10 mass concentration in Kumul was from March to September each year; high values of PM^0 mass concentration in Tazhong and Hotan were distributed from March to August and the average concenlration changed from 500 to 1,000 gg/m3, respectively. (4) The average seasonal concentration changes of PM10 in Kumul, Tazhong and Hotan were: spring 〉 summer 〉 autumn 〉 winter; the highest average concentration of PMl0in Tazhong, was about 1,000 gg/m3 in spring and between 400 and 900 gg/m3 in summer, and the average concentration was lower in autumn and winter, basically between 200 and 400 gg/m3. (5) PMl0 concentration during the sandstorm season was just over two times the con- centration of the non-sandstorm season in Kumul, Tazhong and Hotan. The average concentrations of sandstorm season in Tazhong were 6.2 and 3.6 times the average concentrations of non-sandstorm season in 2004 and 2008, respectively. (6) The mass concentra- tion of PM10 had the following sequence during the dust weather: clear day 〈 floating dust 〈 floating and blowing dust 〈 sandstorm. The wind speed directly affects the concentration of PM10 in the atmosphere, the higher the wind speed, the higher the mass concen- tration. Temperature, relative humidity and bammelric pressure are important factors affecting the strength of storms, which could also indirectly affect the concentration change of PM~ 0 in the atmosphere.展开更多
The corrosion behavior of low carbon steel (CS), P-bearing steel (PS) and P-RE weathering steel (P-REWS) exposed for two years in Jiangjin of China was investigated. The results showed that during 2-year exposur...The corrosion behavior of low carbon steel (CS), P-bearing steel (PS) and P-RE weathering steel (P-REWS) exposed for two years in Jiangjin of China was investigated. The results showed that during 2-year exposure test, corrosion data of the experimental steels followed the bilogarithmic equation, and the average corrosion depth of PS and P-REWS was decreased by 19.5% and 28.2% respectively compared with that of CS. Scanning electron microscope, electrochemical impedance spectroscope and Fourier transform infrared spectroscope were used to characterize the corrosion products. The research results showed that P in steel could promote the formation of an amorphous ferric oxyhydroxide layer near the substrate. The addition of RE could effectively increase the charge transportation re sistanee of rust.展开更多
Environmental conditions such as wind, temperature and humidity affect the amount of solar irradiance received by the photovoltaic (PV) cells and thus have a significant effect on the PV output efficiency. This paper ...Environmental conditions such as wind, temperature and humidity affect the amount of solar irradiance received by the photovoltaic (PV) cells and thus have a significant effect on the PV output efficiency. This paper aims to analyze the power efficiency of Polycrystalline Silicon solar cells under China’s weather considering these environmental conditions. Performance of the Polycrystalline solar panel is analyzed through eight months of data emphasizing the maximum, average and minimum temperature acquired from a solar power plant installed at Taiyuan University of technology, China consisting of 78 PV panels with a total rated capacity of 20 KW and average module efficiency of 16.56% at an ambient temperature of 25°. The results of our practical investigations show that polycrystalline solar cells in October yield the best monthly average efficiency of 35.6% at an average temperature and humidity level of 14°C and 44%. In comparison to a maximum temperature of 27°C and humidity of 66% in summer, the efficiency is found to drop by 5%. Also, the power produced in winter at minimum temperature and the efficiency showed a decline of 15% compared to that of October. Consequently, this investigation leads to a conclusion that the increase in temperature and humidity together is found to have a negative effect on the efficiency whereas the increase in irradiance and wind speed showed an improvement in the output power of the polycrystalline solar cells.展开更多
This paper mainly studies Weather Stations part of the wind power station. The use of wind energy in practice is carried out using the facilities of the wind in which the kinetic energy of the windscreen flow is conve...This paper mainly studies Weather Stations part of the wind power station. The use of wind energy in practice is carried out using the facilities of the wind in which the kinetic energy of the windscreen flow is converted into mechanical energy wind speed, then electrical energy alternator. The effective operation of the wind turbine is dependent on the direction of the wind. Speed air density, which in turn depends on the temperature and humidity. Thus, the speed of the wind worked effectively in its composition must include the weather. Meteorological station also performs the role of prevention. When the sharp wind speed or increase wind speed above the maximum value, it sends a signal to the lock assembly wind to prevent wind turbine technology from damage. The work of the meteorological stations design as part of the Wind Energy Station is considered. The complex technical devices are used for its implementation. A set of technical means used to its implementation and designed system consists of a temperature, humidity, wind speed, wind direction and rain gauge sensors that are connected to PIC16f876A microcontroller.展开更多
Biological carbon pumping(BCP)is a key process in which dissolved inorganic carbon in terrestrial aquatic ecosystems is utilized by aquatic autotrophs for photosynthesis and transformed into autochthonous organic matt...Biological carbon pumping(BCP)is a key process in which dissolved inorganic carbon in terrestrial aquatic ecosystems is utilized by aquatic autotrophs for photosynthesis and transformed into autochthonous organic matter(AOC).However,the mechanisms underlying BCP and the amount of generated AOC deposited effectively,are still poorly understood.Therefore,we conducted a systematic study combining modern hydrochemical monitoring and a sediment trap experiment in Fuxian Lake(Yunnan,SW China),the second-deepest plateau,oligotrophic freshwater lake in China.Temperature,pH,EC(electrical conductivity),DO(dissolved O2),[HCO3^-],[Ca^2+],SIc,partial CO2(pCO2)pressure,and carbon isotopic compositions of HCO3^-(δ^13CDIc)in water from Fuxian Lake all displayed distinct seasonal and vertical variations.This was especially apparent in an inverse correlation between pCO2 and DO,indicating that variations of hydrochemistry in the lake water were mainly controlled by the metabolism of the aquatic phototrophs.Furthermore,the lowest C/N ratios and highestδ^13Corg were recorded in the trap sediments.Analyses of the C/N ratio demonstrated that the proportions of AOC ranged from 30%to 100%of all OC,indicating that AOC was an important contributor to sedimentary organic matter(OC).It was calculated that the AOC flux in Fuxian Lake was 20.43 t C km^-2 in 2017.Therefore,AOC produced by carbonate weathering and aquatic photosynthesis could potentially be a significant carbon sink and may have an important contribution to solving the lack of carbon sinks in the global carbon cycle.展开更多
This study aims to propose a method for quantitatively evaluating the influence which the obstruction of sea breezes by clusters of high-rise buildings has on the urban heat island effect using a weather simulation mo...This study aims to propose a method for quantitatively evaluating the influence which the obstruction of sea breezes by clusters of high-rise buildings has on the urban heat island effect using a weather simulation model and Geographic Information Systems (GIS). Specifically, a method of evaluating the influence of the obstruction of sea breeze by high-rise buildings on the urban heat island effect was proposed. In the method, two scenarios that imagine urban forms which differ with regard to whether or not they contain high-rise buildings are created and weather simulation is conducted, and the results of the simulations are comparatively analyzed focusing on temperature and wind speed. Evaluation was conducted in two stages, and Shiodome of Minato City in the Tokyo Metropolis was selected as the region for evaluation. In two stages of evaluation, a rise in temperature of approximately 0.3 K and a reduction in wind speed of approximately 1 m/s were observed in a region approximately five to ten kilometers square downwind of high-rise buildings in the period 6 PM to 9 PM, and a higher temperature caused by the obstruction of sea breeze by high-rise buildings was identified. The fact that such a higher temperature was confirmed in the time period from 6 PM onwards, in which the temperature decreases, reveals that obstruction of sea breeze by high-rise buildings dulls the decrease in temperature which occurs from evening onwards, and influences nighttime urban heat island formation.展开更多
文摘Since the end of 2019,the world has suffered from a pandemic of the disease called COVID-19.WHO reports show approximately 113M confirmed cases of infection and 2.5 M deaths.All nations are affected by this nightmare that continues to spread.Widespread fear of this pandemic arose not only from the speed of its transmission:a rapidly changing“normal life”became a fear for everyone.Studies have mainly focused on the spread of the virus,which showed a relative decrease in high temperature,low humidity,and other environmental conditions.Therefore,this study targets the effect of weather in considering the spread of the novel coronavirus SARS-CoV-2 for some confirmed cases in Iraq.The eigenspace decomposition technique was used to analyze the effect of weather conditions on the spread of the disease.Our theoretical findings showed that the average number of confirmed COVID-19 cases has cyclic trends related to temperature,humidity,wind speed,and pressure.We supposed that the dynamic spread of COVID-19 exists at a temperature of 130 F.The minimum transmission is at 120 F,while steady behavior occurs at 160 F.On the other hand,during the spread of COVID-19,an increase in the rate of infection was seen at 125%humidity,where the minimum spread was achieved at 200%.Furthermore,wind speed showed the most significant effect on the spread of the virus.The spread decreases with a wind speed of 45 KPH,while an increase in the infectious spread appears at 50 KPH.
基金Supported by Guangxi Natural Fund Project (0832204 )Guangxi Agricultural Key Technological Project (200702)~~
文摘[Objective] The paper aims to study the effect of weather on rice production in Guangxi. [Method] The authors evaluated the effect of weather and weather disasters in Guangxi on rice production by comparison and analysis in terms of temperature,rain and sunlight in 2009. [Result] The study summarized the main favorable and unfavorable weather conditions of rice growth,and proposed the measures and suggestions to tend to interest and avoid harm on rice production in Guangxi. [Conclusion] This study provides references to the evaluations about effect of weather in Guangxi on rice production and suggestions on how to reduce weather disasters influence and ensure rice production security.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41373078 41173091)the National Key Basic Research Programme of China (Grant No. 2013CB956702)
文摘1 Introduction Global climate change is one of the greatest challenges facing humankind in the 21st century.Studying,and utilising,the carbon sink caused by the weathering of silicate minerals has been a key research focus for
基金the Ministry of Science and Technology of China(Grant No.2006CB403200)National Natural Science Foundation of China(Grant No.49463011,49833002 and 49962002)+2 种基金the open foundation projects of the State Key Laboratory of Environmental Geochemistry(in the years of 1993 and 1995)Engineering Project for Cross-century Qualified Scientific and Technological Personnel of Guizhou Province (2000-2004)Science Foundation of Guizhou Province.
文摘We investigated the weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical regions of China. The investigation demonstrated that the weathering- pedogenesis of carbonate rocks is the process of a joint action of corrosion and illuviation and metasomatism in subtropical region. It is characterized by multi-stage, multi-path and multi-style. With the persisting development of weathering-pedogenesis of carbonate rocks, metasomatic pedogenesis progressively became the main process of the weathering-pedogenesis and the dominant style of formation of minerals. And it proceeds through the whole process of evolution of the weathering-pedogenesis of carbonate rocks. The stage evolution of weathering-pedogenesis of carbonate rocks and the fractionation evolution of newly produced minerals are characterized by obvious vertically zoning structures and the rules of gradation of elements geochemical characteristics in the carbonate rocks weathering profiles. The geochemical process of weathering-pedogenesis of carbonate rocks can be divided into three geochemical evolution stages, i.e., the Ca, Mg-depletion and Si, Al-enrichment stage; the Fe, Mn enrichment stage and the Si-depletion and Al-enrichment stage in the subtropical regions. Consistent with the three geochemical evolution stages, the sequence of formation and evolution of minerals can be divided into the clay mineral stage; the Fe, Mn oxide and the gibbsite stage. The influence of weathering-pedogenesis of carbonate rocks on the chemical forms of heavy elements is mainly affected via newly produced components and minerals in the process of weathering-pedogenesis, e.g., iron oxide minerals and organic matters. The important mechanism for the mobilization, transport and pollution of F and As is affected the selective adsorption and desorption of F and As on the surface of iron oxide minerals in the subtropical karst zones, i.e., the selective adsorption and desorption on mineral surfaces of newly produced minerals in the process of weathering-pedogenesis control the geochemical behavior of elements on the Earth's surface and environmental quality in subtropical regions.
文摘China has accumulated massive fine grained copper mine tailings stocks because of the past mining activities in this area. The tailings contain a variety of heavy metals, and the mass percent of Cu, which is one of the main contaminants in tailings, is up to 0.2601% (analysis by XRF). The Cu can pollute soil and groundwater by rain leaching in the form of Cu(Ⅱ), furthermore ,the fine grained copper-ore-tailings can contaminant larger area by wind for its small granularity ( < 74 μm). The main cause of weathering of mine tailings is due to oxidative dissolution of sulfides. Microorganisms, such as Acidithiobacillus ferrooxidans, play an important role in weathering. These bacteria attach to exposed to mineral surfaces by excreting extracellular polymers and oxidize the sulfide mineral. Some of these bacteria also oxidize Fe2+ to Fe3+ which can chemically oxidize sulfide minerals. These reactions produce voluminous quantities of acid mine drainage and heavy metals which are harmful to the environment and human healthy. This study aims at finding the weathering effects of A. ferrooxidans to Cu(II) pollution of fine grained copper mine tailings, and our experiment applied indigenous A. ferrooxidans FJ-01 to leach the tailings. The optimum test parameters were obtained using shaking flask experiment and SEM observation under the following experimental conditions: 39 days residence time, pulp density 1%-15% (1%, 5% and 15%), 30℃, 120 rpm, pH between 1-3 and redox potential between 400-650 mV. The test results show that the leaching rate of Cu reached 43.1% when the pulp density was 1% after 33 days and kept invariant till the end of the test. In addition, the leaching rate of Cu will decrease as the increase of pulp density, and the maximum rate of 15% pulp density was only 12.5%. From the SEM, it can be seen that the fine grain of tailings flocculated to conglobation under the action of bacterial leaching.
基金supported by the Gong-Yi Program of China Meteorological Administration(GYHY201106034)National Natural Science Foundation of China(41075103)
文摘Air pollution has ever become a global major public health problem.Previous studies showed that air pollution is associated with excessive mortality and morbidity of respiratory disease[1-2].The extreme weather temperature can impact human health and the thermal stresses can lead not only to direct deaths and illnesses,but also to aggravation of respiratory disease[3-4].Though the independent
基金supported by the National Natural Science Foundation of China(40875010,41005050)the Xinjiang Science and Technology Support Project(200891129)the Global Change National Key Scientific Research Project(2011 CB952002)
文摘Soil moisture is an important parameter for the interaction between soil and atmosphere. It is the sec- ond important factor that influences climate change, next to sea surface temperature (SST). Most previous studies focused on the monsoon regions in East China, and only a few laid emphases on arid environments. In Xinjiang, which is located in Northwest China, the climate is typically arid and semi-arid. During the past 20 years, the pre- cipitation in Xinjiang has shown a significant increasing trend, and it is closely related to oasis irrigation. This paper aims at discussing whether abnormal soil moisture in spring can be the signal to forecast summer precipitation. The effects of abnormal soil moisture due to farm irrigation in spring in arid environments on regional climate are inves- tigated by using a regional climate model (RegCM3). The results indicate that positive soil moisture anomaly in irrigated cropland surface in May led to an increase in precipitation in spring as well as across the whole summer. The impact could last for about four months. The effects of soil moisture on the surface air temperature showed a time-lagging trend. The summer air temperature declined by a maximum amplitude of 0.8℃. The increased soil moisture could enhance evaporation and ascending motion in the low troposphere, which brought in more precipi- tation. The soil moisture affected regional weather and climate mainly by altering the surface sensible and latent heat fluxes.
基金the National Natural Science Foundation of China(Grant No.41790475).
文摘The linkage between the Arctic and midlatitudes has received much attention recently due to the rapidly changing climate.Many investigations have been conducted to reveal the relationship between the Arctic and Eurasian extreme events from the perspective of climatological statistics.As a prediction source for extreme events in Eurasia,Arctic conditions are crucial for extreme event predictions.Therefore,it is urgent to explore the Arctic influence on the predictability of Eurasian extreme events due to the large uncertainties in Arctic conditions.Considering the sensitivity and nonlinearity of the atmospheric circulations in midlatitude to Arctic conditions,it is necessary to investigate the Arctic influences on Eurasian extreme weather events in case studies at weather time scales.Previous studies indicate that only perturbations in specific patterns have fast growth.Thus,the conditional nonlinear optimal perturbation approach is recommended for exploring the uncertainties in Arctic initial and boundary conditions and their synergistic effect on Eurasian extreme events.Moreover,the mechanism for extreme event formation may differ in different cases.Therefore,more extreme cases should be investigated to reach robust conclusions.
文摘One natural process has since the origin of the Earth removed almost all the CO2 that was ever produced by volcanism. That process is the reaction of CO2 and water with rocks, a process known as weathering. It is a logical choice to see if we can use the same process to remove also the vastly higher CO2 emissions caused by burning in a few hundred years the fossil fuels that have taken hundreds of millions of years for their formation. Many people claim that the rate of weathering of olivine is too slow to counter climate change, but they base this on experimental data in sterile laboratories, under exclusion of biotic and other environmental factors. As many conditions determine the weathering rate at each specific location, these laboratory conditions are irrelevant for the real world. Weathering models based on these laboratory data are off by orders of magnitude. Weathering experiments that use conditions closer to nature [1] show already much higher weathering rates. In this note I provide some data on the weathering of olivine in nature, which make clear that the weathering of olivine is fast enough to play an important role in the cycle of CO2 capture and its safe and sustainable storage as carbonate rocks. The CO2 released by volcanism has always been captured by the weathering of rocks since the origin of the Earth. Without this mechanism the Earth would be a lifeless planet with a CO2 atmosphere in the order of 100 bar, as our neighbor planet Venus demonstrates.
基金supported by Natural Science Foundation of China (41175017, 41175140)Public Service Sectors (Meteorology) Research and Special Funds (GYHY201006012, GYHY201106025)
文摘In recent years, the physical and chemical properties of dust aerosols from the dust source area in northem China have attracted increased attention. In this paper, Thermo RP 1400a was used for online continuous observation and study of the hinterland of Taldimakan, Tazhong, and surrounding areas of Kurnul and Hotan from 2004 to 2006. In combination with weather analysis during a sandstorm in the Tazhong area, basic characteristics and influencing factors of dust aerosol PMl0 have been summarized as below: (1) The occurrence days of floating dust and blowing dust appeared with an increasing trend in Kumul, Tazhong and Hotan, while the number of dust storm days did not significantly change. The frequency and intensity of dust weather were major factors affecting the concentration of dust aerosol PMI0 in the desert. (2) The mass concentration of PM10 had significant regional distribution characteris- tics, and the mass concentration at the eastern edge of Taklimakan, Kumul, was the lowest; second was the southern edge of the desert, Hotan; and the highest was in the hinterland of the desert, Tazhong. (3) High values of PM10 mass concentration in Kumul was from March to September each year; high values of PM^0 mass concentration in Tazhong and Hotan were distributed from March to August and the average concenlration changed from 500 to 1,000 gg/m3, respectively. (4) The average seasonal concentration changes of PM10 in Kumul, Tazhong and Hotan were: spring 〉 summer 〉 autumn 〉 winter; the highest average concentration of PMl0in Tazhong, was about 1,000 gg/m3 in spring and between 400 and 900 gg/m3 in summer, and the average concentration was lower in autumn and winter, basically between 200 and 400 gg/m3. (5) PMl0 concentration during the sandstorm season was just over two times the con- centration of the non-sandstorm season in Kumul, Tazhong and Hotan. The average concentrations of sandstorm season in Tazhong were 6.2 and 3.6 times the average concentrations of non-sandstorm season in 2004 and 2008, respectively. (6) The mass concentra- tion of PM10 had the following sequence during the dust weather: clear day 〈 floating dust 〈 floating and blowing dust 〈 sandstorm. The wind speed directly affects the concentration of PM10 in the atmosphere, the higher the wind speed, the higher the mass concen- tration. Temperature, relative humidity and bammelric pressure are important factors affecting the strength of storms, which could also indirectly affect the concentration change of PM~ 0 in the atmosphere.
基金Item Sponsored by National Natural Science Foundation of China(50671027)National Key Basic Research Programof China(2004CB619101)
文摘The corrosion behavior of low carbon steel (CS), P-bearing steel (PS) and P-RE weathering steel (P-REWS) exposed for two years in Jiangjin of China was investigated. The results showed that during 2-year exposure test, corrosion data of the experimental steels followed the bilogarithmic equation, and the average corrosion depth of PS and P-REWS was decreased by 19.5% and 28.2% respectively compared with that of CS. Scanning electron microscope, electrochemical impedance spectroscope and Fourier transform infrared spectroscope were used to characterize the corrosion products. The research results showed that P in steel could promote the formation of an amorphous ferric oxyhydroxide layer near the substrate. The addition of RE could effectively increase the charge transportation re sistanee of rust.
文摘Environmental conditions such as wind, temperature and humidity affect the amount of solar irradiance received by the photovoltaic (PV) cells and thus have a significant effect on the PV output efficiency. This paper aims to analyze the power efficiency of Polycrystalline Silicon solar cells under China’s weather considering these environmental conditions. Performance of the Polycrystalline solar panel is analyzed through eight months of data emphasizing the maximum, average and minimum temperature acquired from a solar power plant installed at Taiyuan University of technology, China consisting of 78 PV panels with a total rated capacity of 20 KW and average module efficiency of 16.56% at an ambient temperature of 25°. The results of our practical investigations show that polycrystalline solar cells in October yield the best monthly average efficiency of 35.6% at an average temperature and humidity level of 14°C and 44%. In comparison to a maximum temperature of 27°C and humidity of 66% in summer, the efficiency is found to drop by 5%. Also, the power produced in winter at minimum temperature and the efficiency showed a decline of 15% compared to that of October. Consequently, this investigation leads to a conclusion that the increase in temperature and humidity together is found to have a negative effect on the efficiency whereas the increase in irradiance and wind speed showed an improvement in the output power of the polycrystalline solar cells.
文摘This paper mainly studies Weather Stations part of the wind power station. The use of wind energy in practice is carried out using the facilities of the wind in which the kinetic energy of the windscreen flow is converted into mechanical energy wind speed, then electrical energy alternator. The effective operation of the wind turbine is dependent on the direction of the wind. Speed air density, which in turn depends on the temperature and humidity. Thus, the speed of the wind worked effectively in its composition must include the weather. Meteorological station also performs the role of prevention. When the sharp wind speed or increase wind speed above the maximum value, it sends a signal to the lock assembly wind to prevent wind turbine technology from damage. The work of the meteorological stations design as part of the Wind Energy Station is considered. The complex technical devices are used for its implementation. A set of technical means used to its implementation and designed system consists of a temperature, humidity, wind speed, wind direction and rain gauge sensors that are connected to PIC16f876A microcontroller.
基金supported by the National Natural Science Foundation of China (Nos. 41430753, U1612441)
文摘Biological carbon pumping(BCP)is a key process in which dissolved inorganic carbon in terrestrial aquatic ecosystems is utilized by aquatic autotrophs for photosynthesis and transformed into autochthonous organic matter(AOC).However,the mechanisms underlying BCP and the amount of generated AOC deposited effectively,are still poorly understood.Therefore,we conducted a systematic study combining modern hydrochemical monitoring and a sediment trap experiment in Fuxian Lake(Yunnan,SW China),the second-deepest plateau,oligotrophic freshwater lake in China.Temperature,pH,EC(electrical conductivity),DO(dissolved O2),[HCO3^-],[Ca^2+],SIc,partial CO2(pCO2)pressure,and carbon isotopic compositions of HCO3^-(δ^13CDIc)in water from Fuxian Lake all displayed distinct seasonal and vertical variations.This was especially apparent in an inverse correlation between pCO2 and DO,indicating that variations of hydrochemistry in the lake water were mainly controlled by the metabolism of the aquatic phototrophs.Furthermore,the lowest C/N ratios and highestδ^13Corg were recorded in the trap sediments.Analyses of the C/N ratio demonstrated that the proportions of AOC ranged from 30%to 100%of all OC,indicating that AOC was an important contributor to sedimentary organic matter(OC).It was calculated that the AOC flux in Fuxian Lake was 20.43 t C km^-2 in 2017.Therefore,AOC produced by carbonate weathering and aquatic photosynthesis could potentially be a significant carbon sink and may have an important contribution to solving the lack of carbon sinks in the global carbon cycle.
文摘This study aims to propose a method for quantitatively evaluating the influence which the obstruction of sea breezes by clusters of high-rise buildings has on the urban heat island effect using a weather simulation model and Geographic Information Systems (GIS). Specifically, a method of evaluating the influence of the obstruction of sea breeze by high-rise buildings on the urban heat island effect was proposed. In the method, two scenarios that imagine urban forms which differ with regard to whether or not they contain high-rise buildings are created and weather simulation is conducted, and the results of the simulations are comparatively analyzed focusing on temperature and wind speed. Evaluation was conducted in two stages, and Shiodome of Minato City in the Tokyo Metropolis was selected as the region for evaluation. In two stages of evaluation, a rise in temperature of approximately 0.3 K and a reduction in wind speed of approximately 1 m/s were observed in a region approximately five to ten kilometers square downwind of high-rise buildings in the period 6 PM to 9 PM, and a higher temperature caused by the obstruction of sea breeze by high-rise buildings was identified. The fact that such a higher temperature was confirmed in the time period from 6 PM onwards, in which the temperature decreases, reveals that obstruction of sea breeze by high-rise buildings dulls the decrease in temperature which occurs from evening onwards, and influences nighttime urban heat island formation.