期刊文献+
共找到968篇文章
< 1 2 49 >
每页显示 20 50 100
Wear behavior of functionally graded cemented carbides with CoNiFeCr multi-principal-element alloy binder
1
作者 Cheng Qian Kun Li +5 位作者 Yong Liu Xin Zhang Shuailong Zhang Ji Zhang Lijun Jiang Huichao Cheng 《Journal of Materials Science & Technology》 2025年第14期245-267,共23页
The good combination of mechanical and wear properties for cemented carbides is crucial.In this work,the wear behavior of functionally graded cemented carbide(FGCC)and non-graded cemented carbide(CC),with CoNiFeCr mul... The good combination of mechanical and wear properties for cemented carbides is crucial.In this work,the wear behavior of functionally graded cemented carbide(FGCC)and non-graded cemented carbide(CC),with CoNiFeCr multi-principal-element alloy(MPEA)binder,has been investigated by performing sliding wear tests and composition characterization.The results showed that compared with CC,FGCC had higher hardness,stronger fracture toughness,better wear performance,and similar TRS.FGCCs exhibited lower wear rates(3.44×10^(−7)–6.95×10^(−6)mm^(3)/(N m))and coefficients of friction(COFs)(0.27–0.39)than CCs from RT to 600℃due to mitigation of multiple risks caused by binder removal,fragmentation and pull-out of WC grains,high-temperature oxidation and softening.In the low-temperature wear stage,the MPEA binder underwent dynamic recrystallization(DRX)and twinning deformation before removing from the surface.The binder removal caused dislocation pile-ups and stacking faults(SFs)to form under high stress,resulting in fragmentation and pull-out of WC grains.The low-temperature wear was dominated by abrasive wear and adhesive wear,with a low wear rate and a high and unstable COF.In the high-temperature wear stage,initial pitting oxidation of WC grains generated many subgrain boundaries,reducing heat transfer and exacerbating oxidation,resulting in an oxide layer enriched with WO3,Mx Oy,and MWO4.High-temperature wear was dominated by oxidation wear and high-temperature softening,with a high wear rate and a low and smooth COF.The results from the present study do not only provide theoretical guidance for an understanding of the antiwear mechanism of WC-CoNiFeCr,but also a new approach for the preparation of cemented carbides with high wear resistance. 展开更多
关键词 wear behavior Graded cemented carbide Non-graded cemented carbide Multi-principal-element alloy Sliding wear tests
原文传递
Mechanical properties and wear behavior of extruded basalt fibers/7075 aluminum matrix composites used for drill pipes
2
作者 MA Yin-long SUN Zhi-gang +3 位作者 XIONG Hong-wei REN Jie ZHAO Jing-jing GUO Cheng-bin 《Journal of Central South University》 2025年第1期21-33,共13页
Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot presse... Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes. 展开更多
关键词 aluminum matrix composites basalt fibers mechanical properties wear behavior
在线阅读 下载PDF
Dry sliding wear behavior of cast Mg-11Y-5Gd-2Zn magnesium alloy 被引量:2
3
作者 胡茂良 王渠东 +1 位作者 李程 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1918-1923,共6页
Dry sliding wear tests on as-cast and cast+T6 Mg-11Y-5Gd-2Zn magnesium alloys were performed using a ball-on-plate configuration. The wear rates were measured within a load range of 3-15 N, sliding speed range of 0.0... Dry sliding wear tests on as-cast and cast+T6 Mg-11Y-5Gd-2Zn magnesium alloys were performed using a ball-on-plate configuration. The wear rates were measured within a load range of 3-15 N, sliding speed range of 0.03-0.24 m/s, test temperature range of 25-200 °C and at a constant sliding distance of 400 m. The wear tracks, worn surfaces and wear debris of the alloys were analyzed using scanning electron microscope (SEM). The results show that the wear rate of the alloys increases almost linearly with increasing applied load and decreases with increasing sliding speed. The wear rate of the as-cast alloy is higher than that of the cast+T6 alloy. The amount of Mg12Y1Zn1 phase, surface oxidation and retained wear debris affect the wear rate. The dominant wear mechanisms under the test condition are abrasion and plastic deformation. 展开更多
关键词 Mg-Y-Gd-Zn alloy wear behavior wear rate sliding wear abrasive wear
在线阅读 下载PDF
Wear behavior and mechanism of B_4C reinforced Mg-matrix composites fabricated by metal-assisted pressureless infiltration technique 被引量:3
4
作者 姚彦桃 姜澜 +1 位作者 付高峰 陈礼清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2543-2548,共6页
The B4C/Mg composites fabricated by metal-assisted pressureless infiltration technique were used as experimental material, and the wear behavior and mechanism of this material were studied. A pin-on-disc apparatus was... The B4C/Mg composites fabricated by metal-assisted pressureless infiltration technique were used as experimental material, and the wear behavior and mechanism of this material were studied. A pin-on-disc apparatus was used to evaluate the wear behavior where loads of 20, 40, 60 and 80 N, and a sliding velocity of 250 r/min were exerted. The results show that B4C/Mg composites possess superior wear resistance than pure Mg under various applied loads, and the content of Ti, as infiltration inducer, has an influence on the wear resistance of B4C/Mg composites. The dominant wear mechanism for pure Mg is abrasion, while that for B4C/Mg composites under low loads is adhesion and delamination. Under high loads, the wear mechanism of B4C/Mg composites can be attributed to thermal softening and melting or plastic deformation. 展开更多
关键词 B4C Mg-matrix composites B4C metal-assisted infiltration wear behavior wear mechanism
在线阅读 下载PDF
Microstructure and dry sliding wear behavior of cast Al-Mg_2Si in-situ metal matrix composite modified by Nd 被引量:20
5
作者 Xiao-Feng Wu Guan-Gan Zhang Fu-Fa Wu 《Rare Metals》 SCIE EI CAS CSCD 2013年第3期284-289,共6页
The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, bo... The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt% Mg2Si composite are well modified. The morphology of primary Mg2Si is changed from irregular or dendritic to polyhedral shape, and its average particle size is signifi- cantly decreased. Moreover, the morphology of the eutectic MgzSi phase is altered from flake-like to very short fibrous or dot-like. The wear rates and friction coefficient of the composites with Nd are lower than those without Nd. Furthermore, the addition of 0.5 wt% Nd changes the wear mechanism of the composite from the combination of abrasive, adhesive, and delamination wear without Nd into a single mild abrasion wear with 0.5 wt% Nd. 展开更多
关键词 Al/Mg2Si composites Nd modification MICROSTRUCTURE Dry sliding wear behavior
在线阅读 下载PDF
Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting 被引量:20
6
作者 F.BARTOLOMEU M.BUCIUMEANU +4 位作者 E.PINTO N.ALVES F.S.SILVA O.CARVALHO G.MIRANDA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第4期829-838,共10页
The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different... The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different processing routes were studied:conventional casting,hot pressing and selective laser melting.A comprehensive metallurgical,mechanical and tribologicalcharacterization was performed by X-ray diffraction analysis,Vickers hardness tests and reciprocating ball-on-plate wear tests ofTi6Al4V/Al2O3sliding pairs.The results showed a great influence of the processing route on the microstructural constituents andconsequent differences on hardness and wear performance.The highest hardness and wear resistance were obtained for Ti6Al4Valloy produced by selective laser melting,due to a markedly different cooling rate that leads to significantly different microstructurewhen compared to hot pressing and casting.This study assesses and confirms that selective laser melting is potential to producecustomized Ti6Al4V implants with improved wear performance. 展开更多
关键词 biomedical alloy Ti6Al4V alloy wear behavior MICROSTRUCTURE selective laser melting hot pressing CASTING
在线阅读 下载PDF
Abrasive Wear Behavior and Mechanism of High Chromium Cast Iron 被引量:8
7
作者 Ting SUN Ren-bo SONG +2 位作者 Xu WANG Peng DENG Chun-jing WU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第1期84-90,共7页
The abrasive wear behavior of high chromium cast iron (containing 12.9 mass% chromium) austenitized at 1 050 ℃ for 2 h and austempered in salt bath at 320 ℃ for 4 h was evaluated. Abrasive wear was performed using... The abrasive wear behavior of high chromium cast iron (containing 12.9 mass% chromium) austenitized at 1 050 ℃ for 2 h and austempered in salt bath at 320 ℃ for 4 h was evaluated. Abrasive wear was performed using alumina abrasive under four different loads, namely 50, 100, 150, and 200 N, for 36000 cycles. The worn surfaces and wear debris were analyzed by scanning electron microscopy, laser confocal microscopy and X-ray diffraction. Micro hard- ness profiles were also obtained in order to analyze the strain-hardening effects beneath the contact surfaces. Results indicate that the retained austenite in high chromium cast iron has experienced induced martensitic transformation af- ter tests, for small amounts of retained austenite could be detected by X-ray diffraction. In addition, there is a close relationship between wear mechanism and test load. Under the condition of lower test load, the wear mechanism is an uninterrupted and repeated process, during which matrix is cut at first and then fine carbides flake off. As to high- er test load, scratching and spalling induced by cleavage fracture of blocky carbide are the wear mechanism. 展开更多
关键词 high chromium cast iron abrasive wear wear mechanism wear behavior martensitic transformation
原文传递
Microstructure and dry sliding wear behavior of laser clad AlCrNiSiTi multi-principal element alloy coatings 被引量:8
8
作者 Can Huang Yi-Zhou Tang +4 位作者 Yong-Zhong Zhang An-Ping Dong Jian Tu Lin-Jiang Chai Zhi-Ming Zhou 《Rare Metals》 SCIE EI CAS CSCD 2017年第7期562-568,共7页
The approximately equimolar ratio A1CrNiSiTi multi-principal element alloy (MPEA) coatings were fab- ricated by laser cladding on Ti-6Al-4V (Ti64) alloy. Scanning electron microscopy (SEM), equipped with an ener... The approximately equimolar ratio A1CrNiSiTi multi-principal element alloy (MPEA) coatings were fab- ricated by laser cladding on Ti-6Al-4V (Ti64) alloy. Scanning electron microscopy (SEM), equipped with an energy-dispersive spectroscopy (EDS), and X-ray diffrac- tion (XRD) were used to characterize the microstructure and composition. Investigations show that the coatings consist of (Ti, Cr)5Si3 and NiA1 phases, formed by in situ reaction. The phase composition is initially explicated according to obtainable binary and ternary phase diagrams, and the formation Gibbs energy of TisSi3, VsSi3 and CrsSi3. Dry sliding reciprocating friction and wear tests of the A1CrNiSiTi coating and Ti64 alloy substrate without coating were evaluated. A surface mapping profiler was used to evaluate the wear volume. The worn surface was characterized by SEM-EDS. The hardness and wear resistance of the A1CrNiSiTi coating are well compared with that of the basal material (Ti64). The main wear mechanism of the AICrNiSiTi coating is slightly adhesive transfer from GCrl5 counterpart, and a mixed layer com- posed of transferred materials and oxide is formed. 展开更多
关键词 Laser cladding Multi-principal element alloy MICROSTRUCTURE wear behavior
原文传递
Formation mechanism and wear behavior of gradient nanostructured Inconel 625 alloy 被引量:6
9
作者 Yu-bi GAO Xiu-yan LI +3 位作者 Yuan-jun MA Matthew KITCHEN Yu-tian DING Quan-shun LUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第6期1910-1925,共16页
The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding tr... The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding treatment(SMGT) induced an approximately 800 μm-deep gradient microstructure, consisting of surface nano-grained,nano-laminated, nano-twined, and severely deformed layers, which resulted in a reduced gradient in micro-hardness from 6.95 GPa(topmost surface) to 2.77 GPa(coarse-grained matrix). The nano-grained layer resulted from the formation of high-density nano-twins and subsequent interaction between nano-twins and dislocations. The width and depth of the wear scar, wear loss volume, and wear rate of the SMGT-treated sample were smaller than those of untreated coarse-grained sample. Moreover, the wear mechanisms for both samples were mainly abrasive wear and adhesive wear, accompanied with mild oxidation wear. The notable wear resistance enhancement of the GNS Inconel 625 alloy was attributed to the high micro-hardness, high residual compressive stress, and high strain capacity of the GNS surface layer. 展开更多
关键词 Inconel 625 alloy surface mechanical grinding treatment gradient nanostructure formation mechanism wear behavior residual stress
在线阅读 下载PDF
High-temperature frictional wear behavior of MCrAlY-based coatings deposited by atmosphere plasma spraying 被引量:4
10
作者 Chong Tao Lei Wang Xiu Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第2期222-228,共7页
Al2O3-r2O03/NiCoCrAIYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase com- position of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microsco... Al2O3-r2O03/NiCoCrAIYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase com- position of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser confocal scanning microsco- py (LSCM), and transmission electron microscopy (TEM). The dry frictional wear behavior of the coatings at 500℃ in static air was inves- tigated and compared with that of 0Cr25Ni20 steel. The results show that the coatings comprise the slatted layers of oxide phases, unmelted particles, and pores. The hot abrasive resistance of the coatings is enhanced compared to that of 0Cr25Ni20, and their mass loss is approxi- mately one-fifteenth that of 0Cr25Ni20 steel. The main wear failure mechanisms of the coatings are abrasive wear, fatigue wear, and adhe- sive wear. 展开更多
关键词 metal matrix composites composite coatings wear behavior high temperature properties plasma spraying
在线阅读 下载PDF
Wear map for sliding wear behavior of Cu-15Ni-8Sn alloy against bearing steel under oil-lubricated condition 被引量:7
11
作者 CHENG Jin-juan GAN Xue-ping +2 位作者 LI Zhou LEI Qian ZHOU Ke-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期311-324,共14页
Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range... Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50−700 N and a sliding speed range of 0.05−2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm,respectively.Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior.The equation of the dividing line between zones of safe and unsafe wear life was determined.Lubricating oil was squeezed into micro-cracks under severe wear conditions.In addition,the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides,which hindered the repair of micro-cracks,promoted cracks growth,and led to delamination.This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through developing wear map. 展开更多
关键词 Cu-15Ni-8Sn alloy oil lubrication wear behavior wear map
在线阅读 下载PDF
Sliding wear behavior of high velocity arc sprayed Fe-Al coating 被引量:5
12
作者 朱子新 徐滨士 +1 位作者 马世宁 张伟 《China Welding》 EI CAS 2003年第1期1-5,共5页
The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The ef... The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination. 展开更多
关键词 Fe Al intermetallics COATING friction and wear behavior high velocity arc spraying
在线阅读 下载PDF
Effect of N-ion implantation and diamond-like carbon coating on fretting wear behaviors of Ti6Al7Nb in artificial saliva 被引量:5
13
作者 Xin-ying ZHENG Ya-rong ZHANG Bao-rong ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期1071-1080,共10页
The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC ... The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC coated Ti6Al7Nb alloys plate against a Si3N4ball were carried out on a reciprocating sliding fretting wear test rig.Based on the analysis of X-ray diffraction,Raman spectroscopy,3-D profiler,SEM morphologies and frictional kinetics behavior analysis,the damage behavior of surface modification layer was discussed in detail.The results indicated that the fretting wear behavior of Ti6Al7Nb alloy with N-ion implantation was increased with the dose increase of the implanted nitrogen ions.Moreover,the DLC-coated Ti6Al7Nb alloy with low ion implantation could improve the fretting wear behavior greatly.In addition,the Ti6Al7Nb with DLC coating had better ncorrosion resistance due to the special compact structure.All results suggested that the Ti6Al7Nb with DLC coating had better wear resistance than that with N-ion implantation in artificial saliva. 展开更多
关键词 Ti6Al7Nb alloy ion implantation diamond-like carbon coating fretting wear behavior
在线阅读 下载PDF
Analysis of fretting wear behavior of unloading valve of gasoline direct injection high-pressure pump 被引量:4
14
作者 Liang LU Yin-peng XU +4 位作者 Meng-ru LI Qi-long XUE Man-yi ZHANG Liang-liang LIU Zhong-yu WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第4期314-328,共15页
The high pressures in gasoline direct injection technology lead to structural damage in some hydraulic components,especially annular damage on the contact area of the valve ball and on the valve seat of the spherical ... The high pressures in gasoline direct injection technology lead to structural damage in some hydraulic components,especially annular damage on the contact area of the valve ball and on the valve seat of the spherical unloading valve in the high-pressure pump.In previous study,the authors have analyzed the damage on the unloading valve and demonstrated that it is caused neither by static damage nor fatigue damage and have put forward the hypothesis of fretting wear.This paper is based on the establishment of the statically indeterminate structure of the unloading valve.The micro friction parameters(stress,friction coefficient,etc.)required for the numerical iterative calculation of fretting wear are calculated.In addition,based on the grid adaptive technology and a modified Archard wear model,the fretting wear is calculated quantitatively and is in good agreement with experimental results.Based on that verification,the wear laws of the valve ball and valve seat under the same hardness,different contact angles,and different assembly stresses,are analyzed in detail,and reasoned suggestions for the structural design and assembly design of the ball valve are given. 展开更多
关键词 Fretting wear behavior Unloading valve Experimental and numerical analyses High pressure
原文传递
Grain refinement impact on the mechanical properties and wear behavior of Mg-9Gd-3Y-2Zn-0.5Zr alloy after decreasing temperature reciprocating upsetting-extrusion 被引量:4
15
作者 Wenlong Xu Jianmin Yu +5 位作者 Leichen Jia Chang Gao Zhan Miao Guoqin Wu Guojun Li Zhimin Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3506-3519,共14页
Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on ... Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 ℃ and decreasing by 10 ℃ for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent. 展开更多
关键词 Mg-9Gd-3Y-2Zn-0.5Zr alloy Reciprocating upsetting-extrusion Grain refinement Texture Mechanical properties wear behavior
在线阅读 下载PDF
Effect of multilayer graphene/nano-Fe2O3 composite additions on dry sliding wear behavior of titanium matrix composites 被引量:3
16
作者 Huang Xie Yun-xue Jin +1 位作者 Mu-ye Niu Ji-heng Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第9期1117-1126,共10页
The wear tests of titanium matrix composites(TMCs)at the loads of 50,100,120,and 150 N were carried out with an MMW-1 vertical universal friction and wear tester to study the addition of multilayer graphene(MLG)/nano-... The wear tests of titanium matrix composites(TMCs)at the loads of 50,100,120,and 150 N were carried out with an MMW-1 vertical universal friction and wear tester to study the addition of multilayer graphene(MLG)/nano-Fe2O3 composites(0,0.1,0.2,0.3,0.4,and 0.5 g)on the dry sliding wear behavior of TMCs.TMCs presented a marked variation in wear loss as a function of the amount of MLG/Fe2O3 addition,and a significant decrease in the friction coefficient was obtained,reducing this parameter up to 50%.With the rise and fall of wear loss,TMCs underwent a transition from severe wear to mild wear.These phenomena were attributed to the existence of a protective lubricating film,which prevented the surface from coming in direct contact,and the lubricating film was 15-20μm thick and made up of MLG/Fe2O3(1:2)nanocomposites.Its structure was speculated to be similar to a rolling wood. 展开更多
关键词 Titanium matrix composite GRAPHENE NANOMATERIAL Lubricating film wear behavior
原文传递
Wear behavior of bainite ductile cast iron under impact load 被引量:2
17
作者 Ting Sun Ren-bo Song +1 位作者 Fu-qiang Yang Chun-jing Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第9期871-877,共7页
The dry impact wear behavior of bainite ductile cast iron was evaluated under three different impact loads for 30000 cycles. The strain-hardening effects beneath the contact surfaces were analyzed according to the sur... The dry impact wear behavior of bainite ductile cast iron was evaluated under three different impact loads for 30000 cycles. The strain-hardening effects beneath the contact surfaces were analyzed according to the surfaces' micro-hardness profiles. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to observe the wom surfaces. The results indicated that the material with the highest hardness was the one continuously cooled at 20℃, which exhibited the lowest wear rate under each set of test conditions. The hardness of the worn surface and the thickness of the hardened layer increased with the increases in impact load and in the number of test cycles. The better wear performance of the sample cooled at 20℃ is attributed to its finer microstructure and superior mechanical properties. All the samples underwent the transformation induced plasticity (TRIP) phenomenon after impact wear, as revealed by the fact that small amounts of retained austenite were detected by XRD. 展开更多
关键词 cast iron continuous cooling wear behavior impact loads martensitic transformations
在线阅读 下载PDF
Comprehensive study on quasi-static and dynamic mechanical properties and wear behavior of Mg–B4C composite compacted at several loading rates through powder metallurgy 被引量:3
18
作者 K.RAHMANI G.H.MAJZOOBI +1 位作者 G.EBRAHIM-ZADEH M.KASHFI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期371-381,共11页
The present study aims to fabricate and evaluate the mechanical properties and wear behavior of Mg metal matrix composite,reinforced by 0,1.5,3,5 and 10 vol.%B4C microparticles.Mg−B4C samples were fabricated at 450℃ ... The present study aims to fabricate and evaluate the mechanical properties and wear behavior of Mg metal matrix composite,reinforced by 0,1.5,3,5 and 10 vol.%B4C microparticles.Mg−B4C samples were fabricated at 450℃ and under different loading rates by using split Hopkinson bar(SHB),drop hammer(DH)and Instron(QS)at strain rates of 1600,800 and 0.008 s–1,respectively.The mechanical properties including microhardness,quasi-static and dynamic compressive strengths and wear behavior of samples were experimentally investigated.The results show that,the hardness of SHB and DH samples is obtained to be 20.2%and 5.7%higher than that of the QS sample,respectively.The wear rate and wear mass loss of Mg–10.0%B4C samples fabricated by SHB were determined lower than those of the QS sample by nearly 33%and 39%,respectively.The quasi-static compressive strengths of Mg−5.0%B4C are improved by 39%,30%and 29%for the SHB,DH and QS samples,respectively,in comparison with the case of pure Mg.Furthermore,it is discovered that the dynamic compressive strength of samples is 51%−110%higher than their quasi-static value with respect to the B4C content. 展开更多
关键词 powder compaction high strain rate Mg−B4C composite hardness mechanical properties wear behavior
在线阅读 下载PDF
Friction and wear behaviors of biodegradable Mg-6Gd-0.5Zn-0.4Zr alloy under simulated body fluid condition 被引量:3
19
作者 Jianwei Dai Xiaobo Zhang +3 位作者 Qiao Yin Shengnan Ni Zhixin Ba Zhangzhong Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2017年第4期448-453,共6页
The friction and wear behaviors of biodegradable Mg-6Gd-0.5Zn-0.4Zr(wt%,GZ60K)alloy were evaluated under simulated body fluid(SBF)condition using ball-on-disk configuration and compared with those under dry sliding co... The friction and wear behaviors of biodegradable Mg-6Gd-0.5Zn-0.4Zr(wt%,GZ60K)alloy were evaluated under simulated body fluid(SBF)condition using ball-on-disk configuration and compared with those under dry sliding condition.The results show that under dry sliding and SBF conditions,the friction coefficient declines with increasing applied load and keeps stable with prolonging sliding time.The friction coefficient of the alloy effectively decreases in SBF as compared to dry sliding due to lubrication caused by SBF.The real wear rates under SBF condition are lower than those under dry sliding condition for each parameter.Nevertheless,the nominal wear rates are higher in SBF which are attributed to the more mass loss caused by corrosion but not wear.Both the nominal wear rate in SBF and the dry sliding wear rate increase with increasing applied load,and they decline firstly and then keep stable with prolonging sliding time.It is concluded that the wear of the alloy is restricted by the SBF,but the corrosion of the alloy is aggravated by the wear. 展开更多
关键词 Biodegradable Mg alloy SBF Friction coefficient wear behavior
在线阅读 下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部