This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous...We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous experiments were done on typical images to calculate (using Matlab) the entropy before and after wavelet transform. It was verified that, to obtain minimal entropy, a three-layer decomposition should be adopted rather than higher orders. The result achieved by using biorthogonal wavelet decomposition is better than that of the orthogonal wavelet decomposition. The results are not directly proportional to the vanishing moment, however.展开更多
Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,...Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models.展开更多
The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was...The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was used to decompose two blasting seismic signals with the continuous wavelet transforms (CWT). The resultshows that wavelet analysis is the better method to help us determine the essential factors which create damage effectsthan Fourier analysis.展开更多
The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic...The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic data. Independent component analysis (ICA) can remove most of the noise interference. However, ICA has some defects in noise reduction, because it needs some conditions that seismic data is independent reciprocally for denoising. To solve these defects, this paper proposes an improved ICA algorithm to noise reduction. Through simulation experiments, it can be obtained that the best decomposition levels of the new algorithm is 3. At last, the proposed improved ICA is applied to deal with the actual seismic data. The results show that it can effectively eliminate most of seismic noise such as random noise, linear interference, surface waves, and so on. The improved ICA is not only easy to denoising, but also has excellent mathematical theoretical properties.展开更多
In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are construc...In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are constructed. The dual transform method is proposed and the radar data storage is reduced by it. The method of choosing the wavelet coefficients, and the methods of correlation and nearest neighbor classification in wavelet domain based on the compressed data, are presented. The experimental results of the classification, using the high resolution range returns from six kinds of aircrafts, show that the methods of transform, compression and recognition are efficient.展开更多
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
基金the Natural Science Foundation of China (No. 60472037).
文摘We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous experiments were done on typical images to calculate (using Matlab) the entropy before and after wavelet transform. It was verified that, to obtain minimal entropy, a three-layer decomposition should be adopted rather than higher orders. The result achieved by using biorthogonal wavelet decomposition is better than that of the orthogonal wavelet decomposition. The results are not directly proportional to the vanishing moment, however.
基金Supported by the National Natural Science Foundation of China under Grant 42274144 and under Grant 41974137.
文摘Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models.
文摘The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was used to decompose two blasting seismic signals with the continuous wavelet transforms (CWT). The resultshows that wavelet analysis is the better method to help us determine the essential factors which create damage effectsthan Fourier analysis.
基金Funded by the Project of China Geological Survey (No.1212010916040)the Sichuan Science and Technology Program (No.2017JY0051)the Sichuan Science and Technology Program (No.2018GZ0200)
文摘The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic data. Independent component analysis (ICA) can remove most of the noise interference. However, ICA has some defects in noise reduction, because it needs some conditions that seismic data is independent reciprocally for denoising. To solve these defects, this paper proposes an improved ICA algorithm to noise reduction. Through simulation experiments, it can be obtained that the best decomposition levels of the new algorithm is 3. At last, the proposed improved ICA is applied to deal with the actual seismic data. The results show that it can effectively eliminate most of seismic noise such as random noise, linear interference, surface waves, and so on. The improved ICA is not only easy to denoising, but also has excellent mathematical theoretical properties.
文摘In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are constructed. The dual transform method is proposed and the radar data storage is reduced by it. The method of choosing the wavelet coefficients, and the methods of correlation and nearest neighbor classification in wavelet domain based on the compressed data, are presented. The experimental results of the classification, using the high resolution range returns from six kinds of aircrafts, show that the methods of transform, compression and recognition are efficient.