Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discriminati...Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.展开更多
Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has b...Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has become the primary means for sea-ice research. Optical images contain abundant sea-ice multi-spectral in-formation, whereas SAR images contain rich sea-ice texture information. If the characteristic advantages of SAR and optical images could be combined for sea-ice study, the ability of sea-ice monitoring would be im-proved. In this study, in accordance with the characteristics of sea-ice SAR and optical images, the transfor-mation and fusion methods for these images were chosen. Also, a fusion method of optical and SAR images was proposed in order to improve sea-ice identification. Texture information can play an important role in sea-ice classification. Haar wavelet transformation was found to be suitable for the sea-ice SAR images, and the texture information of the sea-ice SAR image from Advanced Synthetic Aperture Radar (ASAR) loaded on ENVISAT was documented. The results of our studies showed that, the optical images in the hue-intensi-ty-saturation (HIS) space could reflect the spectral characteristics of the sea-ice types more efficiently than in the red-green-blue (RGB) space, and the optical image from the China-Brazil Earth Resources Satellite (CBERS-02B) was transferred from the RGB space to the HIS space. The principal component analysis (PCA) method could potentially contain the maximum information of the sea-ice images by fusing the HIS and texture images. The fusion image was obtained by a PCA method, which included the advantages of both the sea-ice SAR image and the optical image. To validate the fusion method, three methods were used to evaluate the fused image, i.e., objective, subjective, and comprehensive evaluations. It was concluded that the fusion method proposed could improve the ability of image interpretation and sea-ice identification.展开更多
The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our appr...The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.展开更多
This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band an...This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band and upper band energy of the residue of the regularized image is theoretically analyzed by employing wavelet transform. This paper shows that regularization operator should generally be lowstop and highpass. So this paper chooses a lowstop and highpass operator as regularization operator, and construct an optimization model which minimizes the mean squares residue of regularized solution to determine regularization parameter. Although the model is random, on the condition of this paper, it can be solved and yields regularization parameter and regularized solution. Otherwise, the technique has a mechanism to predict noise energy. So, without noise information, it can also work and yield good restoration results.展开更多
In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic mul...In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic multigrid context is based on lowpass filter version of Wavelet Transform. The robustness and efficiency of this new approach is tested by applying it to large sparse, unsymmetric and ill-conditioned matrices from Tim Davis collection of sparse matrices. Proposed preconditioners have potential in reducing cputime, operator complexity and storage space of algebraic multigrid V-cycle and meet the desired accuracy of solution compared with that of orthogonal wavelets.展开更多
The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the follow...The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the following aspects: Firstly, two different methods, which are same in essence: the method of the unknown induction current expansion and the method of the integral operator expansion are used to solve the EFIE, Secondly, how to choose the wavelet basis function in wavelet MoM. For two dimension problem, the wavelet MoM is employed and compared with the conventional MoM in CPU time, computational precision and matrix spareness etc. Here, the fast wavelet transform (FWT) is used to compute the matrix elements rapidly and efficiently. Typical numerical results are presented to illustrate the concepts.展开更多
In this paper, we present the construction of purely algebraic Daubechies wavelet based preconditioners for Krylov subspace iterative methods to solve linear sparse system of equations. Effective preconditioners are d...In this paper, we present the construction of purely algebraic Daubechies wavelet based preconditioners for Krylov subspace iterative methods to solve linear sparse system of equations. Effective preconditioners are designed with DWTPerMod algorithm by knowing size of the matrix and the order of Daubechies wavelet. A notable feature of this algorithm is that it enables wavelet level to be chosen automatically making it more robust than other wavelet based preconditioners and avoids user choosing a level of transform. We demonstrate the efficiency of these preconditioners by applying them to several matrices from Tim Davis collection of sparse matrices for restarted GMRES.展开更多
The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time vari...The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV--due to damage) systems based on Time-frequency (TF) techniques--such as short-time Fourier transform (STFT), empirical mode decomposition (EMD), and wavelets--is proposed. STFT, EMD, and wavelet methods developed to date are reviewed in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate determination of mode shape. In cases with output only modal identification using ambient/random response, the random decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they arc signal based; hence, can be used for output only modal identification. A three degree of freedom 1:10 scale model test structure is used to validate the proposed output only modal identification techniques based on STFT, EMD, HT, wavelets. Both measured free vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the relative ease with which the TF techniques can be used for modal identification and their potential for real world applications where output only identification is essential. Recorded ambient vibration data processed using techniques such as the random decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal identification can be performed.展开更多
基金Natural Science Foundation of Shandong Province (Y2000E08) the bargain item of China Earthquake Administration in the year 2002.
文摘Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.
基金The National Science Foundation for Young Scientists of China under contract No.41306193the National Special Research Fund for Non-Profit Marine Sector of China under contract No.201105016the ESA-MOST Dragon 3 Cooperation Programme under contract No.10501
文摘Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has become the primary means for sea-ice research. Optical images contain abundant sea-ice multi-spectral in-formation, whereas SAR images contain rich sea-ice texture information. If the characteristic advantages of SAR and optical images could be combined for sea-ice study, the ability of sea-ice monitoring would be im-proved. In this study, in accordance with the characteristics of sea-ice SAR and optical images, the transfor-mation and fusion methods for these images were chosen. Also, a fusion method of optical and SAR images was proposed in order to improve sea-ice identification. Texture information can play an important role in sea-ice classification. Haar wavelet transformation was found to be suitable for the sea-ice SAR images, and the texture information of the sea-ice SAR image from Advanced Synthetic Aperture Radar (ASAR) loaded on ENVISAT was documented. The results of our studies showed that, the optical images in the hue-intensi-ty-saturation (HIS) space could reflect the spectral characteristics of the sea-ice types more efficiently than in the red-green-blue (RGB) space, and the optical image from the China-Brazil Earth Resources Satellite (CBERS-02B) was transferred from the RGB space to the HIS space. The principal component analysis (PCA) method could potentially contain the maximum information of the sea-ice images by fusing the HIS and texture images. The fusion image was obtained by a PCA method, which included the advantages of both the sea-ice SAR image and the optical image. To validate the fusion method, three methods were used to evaluate the fused image, i.e., objective, subjective, and comprehensive evaluations. It was concluded that the fusion method proposed could improve the ability of image interpretation and sea-ice identification.
基金Supported by the National Natural Science Foundation of China (10971189, 11001247)the Zhejiang Natural Science Foundation of China (Y6090091)
文摘The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.
基金This work was supported by the National Natural Science Foundation of China(60204001, 60133010)the Scientific Research Fundation of Hunan Provincial Education Department(02C640)the Youth Chengguang Project of Science and Technology of Wuhan City(
文摘This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band and upper band energy of the residue of the regularized image is theoretically analyzed by employing wavelet transform. This paper shows that regularization operator should generally be lowstop and highpass. So this paper chooses a lowstop and highpass operator as regularization operator, and construct an optimization model which minimizes the mean squares residue of regularized solution to determine regularization parameter. Although the model is random, on the condition of this paper, it can be solved and yields regularization parameter and regularized solution. Otherwise, the technique has a mechanism to predict noise energy. So, without noise information, it can also work and yield good restoration results.
文摘In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic multigrid context is based on lowpass filter version of Wavelet Transform. The robustness and efficiency of this new approach is tested by applying it to large sparse, unsymmetric and ill-conditioned matrices from Tim Davis collection of sparse matrices. Proposed preconditioners have potential in reducing cputime, operator complexity and storage space of algebraic multigrid V-cycle and meet the desired accuracy of solution compared with that of orthogonal wavelets.
文摘The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the following aspects: Firstly, two different methods, which are same in essence: the method of the unknown induction current expansion and the method of the integral operator expansion are used to solve the EFIE, Secondly, how to choose the wavelet basis function in wavelet MoM. For two dimension problem, the wavelet MoM is employed and compared with the conventional MoM in CPU time, computational precision and matrix spareness etc. Here, the fast wavelet transform (FWT) is used to compute the matrix elements rapidly and efficiently. Typical numerical results are presented to illustrate the concepts.
文摘In this paper, we present the construction of purely algebraic Daubechies wavelet based preconditioners for Krylov subspace iterative methods to solve linear sparse system of equations. Effective preconditioners are designed with DWTPerMod algorithm by knowing size of the matrix and the order of Daubechies wavelet. A notable feature of this algorithm is that it enables wavelet level to be chosen automatically making it more robust than other wavelet based preconditioners and avoids user choosing a level of transform. We demonstrate the efficiency of these preconditioners by applying them to several matrices from Tim Davis collection of sparse matrices for restarted GMRES.
基金National Science Foundation Grant NSF CMS CAREER Under Grant No.9996290NSF CMMI Under Grant No.0830391
文摘The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV--due to damage) systems based on Time-frequency (TF) techniques--such as short-time Fourier transform (STFT), empirical mode decomposition (EMD), and wavelets--is proposed. STFT, EMD, and wavelet methods developed to date are reviewed in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate determination of mode shape. In cases with output only modal identification using ambient/random response, the random decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they arc signal based; hence, can be used for output only modal identification. A three degree of freedom 1:10 scale model test structure is used to validate the proposed output only modal identification techniques based on STFT, EMD, HT, wavelets. Both measured free vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the relative ease with which the TF techniques can be used for modal identification and their potential for real world applications where output only identification is essential. Recorded ambient vibration data processed using techniques such as the random decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal identification can be performed.