Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discriminati...Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.展开更多
Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has b...Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has become the primary means for sea-ice research. Optical images contain abundant sea-ice multi-spectral in-formation, whereas SAR images contain rich sea-ice texture information. If the characteristic advantages of SAR and optical images could be combined for sea-ice study, the ability of sea-ice monitoring would be im-proved. In this study, in accordance with the characteristics of sea-ice SAR and optical images, the transfor-mation and fusion methods for these images were chosen. Also, a fusion method of optical and SAR images was proposed in order to improve sea-ice identification. Texture information can play an important role in sea-ice classification. Haar wavelet transformation was found to be suitable for the sea-ice SAR images, and the texture information of the sea-ice SAR image from Advanced Synthetic Aperture Radar (ASAR) loaded on ENVISAT was documented. The results of our studies showed that, the optical images in the hue-intensi-ty-saturation (HIS) space could reflect the spectral characteristics of the sea-ice types more efficiently than in the red-green-blue (RGB) space, and the optical image from the China-Brazil Earth Resources Satellite (CBERS-02B) was transferred from the RGB space to the HIS space. The principal component analysis (PCA) method could potentially contain the maximum information of the sea-ice images by fusing the HIS and texture images. The fusion image was obtained by a PCA method, which included the advantages of both the sea-ice SAR image and the optical image. To validate the fusion method, three methods were used to evaluate the fused image, i.e., objective, subjective, and comprehensive evaluations. It was concluded that the fusion method proposed could improve the ability of image interpretation and sea-ice identification.展开更多
The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our appr...The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.展开更多
海冰密集度数据是开展全球海洋监测和应对气候变化研究的重要数据源,为了研制出分辨率更高,误差更小的北极海冰密集度融合资料,本文使用了多源海冰密集度资料,以OSTIA(Operational Sea Surface Temperature and Ice Analysis)数据集为...海冰密集度数据是开展全球海洋监测和应对气候变化研究的重要数据源,为了研制出分辨率更高,误差更小的北极海冰密集度融合资料,本文使用了多源海冰密集度资料,以OSTIA(Operational Sea Surface Temperature and Ice Analysis)数据集为融合背景场,采用以下方案开展融合研究。首先,对现有5种海冰资料进行质量控制;其次,以OSI SAF(Ocean and Sea Ice Satellite Application Facility)资料为基准,采用概率密度匹配法订正各资料的系统误差;然后,利用小波分解将各资料分解为低频信息和高频信息,对低频信息和高频信息分别计算融合权重和卡尔曼滤波处理;最后,利用小波重构将各资料进行融合,生成0.05°分辨率的北极逐日海冰密集度融合资料。通过对比国际上广泛认可的OISST(Optimum Interpolation Sea Surface Temperature)、OSTIA海冰密集度资料,验证结果显示:融合资料与OISST、OSTIA海冰密集度资料在北极的空间分布上高度一致,相关系数均超过0.967。相对于前人的研究,本融合资料与OISST的偏差由–1.170%减少到–0.108%,与OSTIA的偏差由0.276%减少到–0.156%;与OISST和OSTIA的均方根误差分别由9.835%减少为8.010%以及由7.427%减少为5.140%。本融合资料的偏差以及均方根误差都得到了显著的提升,具有较高的质量。展开更多
基金Natural Science Foundation of Shandong Province (Y2000E08) the bargain item of China Earthquake Administration in the year 2002.
文摘Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.
基金The National Science Foundation for Young Scientists of China under contract No.41306193the National Special Research Fund for Non-Profit Marine Sector of China under contract No.201105016the ESA-MOST Dragon 3 Cooperation Programme under contract No.10501
文摘Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has become the primary means for sea-ice research. Optical images contain abundant sea-ice multi-spectral in-formation, whereas SAR images contain rich sea-ice texture information. If the characteristic advantages of SAR and optical images could be combined for sea-ice study, the ability of sea-ice monitoring would be im-proved. In this study, in accordance with the characteristics of sea-ice SAR and optical images, the transfor-mation and fusion methods for these images were chosen. Also, a fusion method of optical and SAR images was proposed in order to improve sea-ice identification. Texture information can play an important role in sea-ice classification. Haar wavelet transformation was found to be suitable for the sea-ice SAR images, and the texture information of the sea-ice SAR image from Advanced Synthetic Aperture Radar (ASAR) loaded on ENVISAT was documented. The results of our studies showed that, the optical images in the hue-intensi-ty-saturation (HIS) space could reflect the spectral characteristics of the sea-ice types more efficiently than in the red-green-blue (RGB) space, and the optical image from the China-Brazil Earth Resources Satellite (CBERS-02B) was transferred from the RGB space to the HIS space. The principal component analysis (PCA) method could potentially contain the maximum information of the sea-ice images by fusing the HIS and texture images. The fusion image was obtained by a PCA method, which included the advantages of both the sea-ice SAR image and the optical image. To validate the fusion method, three methods were used to evaluate the fused image, i.e., objective, subjective, and comprehensive evaluations. It was concluded that the fusion method proposed could improve the ability of image interpretation and sea-ice identification.
基金Supported by the National Natural Science Foundation of China (10971189, 11001247)the Zhejiang Natural Science Foundation of China (Y6090091)
文摘The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.