期刊文献+
共找到465篇文章
< 1 2 24 >
每页显示 20 50 100
Adaptive Dual-Threshold Edge Detection Based on Wavelet Transform 被引量:3
1
作者 侯舒娟 梅文博 张志明 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期247-250,共4页
In order to solve the problems of local maximum modulus extraction and threshold selection in the edge detection of finite resolution digital images, a new wavelet transform based adaptive dual threshold edge detec... In order to solve the problems of local maximum modulus extraction and threshold selection in the edge detection of finite resolution digital images, a new wavelet transform based adaptive dual threshold edge detection algorithm is proposed. The local maximum modulus is extracted by linear interpolation in wavelet domain. With the analysis on histogram, the image is filtered with an adaptive dual threshold method, which effectively detects the contours of small structures as well as the boundaries of large objects. A wavelet domain's propagation function is used to further select weak edges. Experimental results have shown the self adaptivity of the threshold to images having the same kind of histogram, and the efficiency even in noise tampered images. 展开更多
关键词 wavelet transform edge detection propagation function dual threshold
在线阅读 下载PDF
An adaptive continuous threshold wavelet denoising method for LiDAR echo signal
2
作者 Dezhi Zheng Tianchi Qu +4 位作者 Chun Hu Shijia Lu Zhongxiang Li Guanyu Yang Xiaojun Yang 《Nanotechnology and Precision Engineering》 2025年第2期51-62,共12页
Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection... Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection.The laser radar echo signal is vulnerable to background light and electronic thermal noise.While single-photon LiDAR can effectively reduce background light interference,electronic thermal noise remains a significant challenge,especially at long distances and in environments with a low signal-to-noise ratio(SNR).However,conventional denoising methods cannot achieve satisfactory results in this case.In this paper,a novel adaptive continuous threshold wavelet denoising algorithm is proposed to filter out the noise.The algorithm features an adaptive threshold and a continuous threshold function.The adaptive threshold is dynamically adjusted according to the wavelet decomposition level,and the continuous threshold function ensures continuity with lower constant error,thus optimizing the denoising process.Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error(RMSE)compared with other algorithms.Experimental results show that denoising of an actual LiDAR echo signal results in a 4.37 dB improvement in SNR and a 39.5%reduction in RMSE.The proposed method significantly enhances the ability of single-photon LiDAR to detect weak signals. 展开更多
关键词 Single-photon LiDAR Echo signal adaptive thresholding wavelet transform
暂未订购
Fabric Defect Detection Using Adaptive Wavelet Transform 被引量:4
3
作者 李立轻 黄秀宝 《Journal of Donghua University(English Edition)》 EI CAS 2002年第1期35-39,共5页
A method of woven fabric defect detection using the wavelet transform adaptive to the fabric has been developed. With reference to the orthogonality constrains of Daubechies wavelet, by taking the mmimization of the e... A method of woven fabric defect detection using the wavelet transform adaptive to the fabric has been developed. With reference to the orthogonality constrains of Daubechies wavelet, by taking the mmimization of the energy or the gray level of the pixels in the output sub-images as the additional conditions and using the random algorithm method, two sets of wavelet filters adapted to the fabric texture were formed. The original images of normal fabric texture and the fabric texture with defects were decomposed into horizontal and vertical sub- images by using these filters and the feature indices of these sub-images were also extracted. By comparing the feature indices of the normal texture with that of the defective texture, the fabric defects can be successfully detected and located. 展开更多
关键词 wavelet transform adaptive wavelet IMAGE decompose FABRIC DEFECT detection.
在线阅读 下载PDF
NOVEL ADAPTIVE MULTIUSER DETECTIONALGORITHM BASED ON WAVELET TRANSFORM 被引量:1
4
作者 ZHANGXiao-fei XUDa-zhuan YANGBei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第2期141-146,共6页
The wavelet transform-based adaptive multiuser detection algorithm is presented. The novel adaptive multiuser detection algorithm uses the wavelet transform for the preprocessing, and wavelet-transformed signal uses L... The wavelet transform-based adaptive multiuser detection algorithm is presented. The novel adaptive multiuser detection algorithm uses the wavelet transform for the preprocessing, and wavelet-transformed signal uses LMS algorithm to implement the adaptive multiuser detection. The algorithm makes use of wavelet transform to divide the wavelet space, which shows that the wavelet transform has a better decorrelation ability and leads to better convergence. White noise can be wiped off under the wavelet transform according to different characteristics of signal and white noise under the wavelet transform. Theoretical analyses and simulations demonstrate that the algorithm converges faster than the conventional adaptive multiuser detection algorithm, and has the better performance. Simulation results reveal that the algorithm convergence relates to the wavelet base, and show that the algorithm convergence gets better with the increasing of regularity for the same series of the wavelet base. Finally the algorithm shows that it can be easily implemented. 展开更多
关键词 multiuser detection wavelet transform multi-resolution analyses multi-access interference (MAI) adaptive multiuser detection
在线阅读 下载PDF
A Novel Zero-Watermark Copyright Authentication Scheme Based on Lifting Wavelet and Harris Corner Detection 被引量:1
5
作者 FAN Li GAO Tiegang YANG Qunting 《Wuhan University Journal of Natural Sciences》 CAS 2010年第5期408-414,共7页
In this paper,a novel zero-watermark copyright authentication scheme based on Internet public certification system is proposed.This approach utilizes Haar integer wavelet transform based on a lifting scheme and adapti... In this paper,a novel zero-watermark copyright authentication scheme based on Internet public certification system is proposed.This approach utilizes Haar integer wavelet transform based on a lifting scheme and adaptive Harris corner detection to extract image features,which will be used to produce a binary feature map,and the map is very crucial to the generation of watermark registered later.By properly choosing the parameters of aforementioned techniques such as the threshold T and the radius of local feature region R,the feature map is so much more stable and distinguishing that it can be used to construct robust watermark.Simulations demonstrate that the proposed scheme is resistant to many kinds of signal processing and malicious attacks such as Gaussian blurring,additive noising,JPEG lossy compression,cropping,scaling and slight rotation operation.Compared with a relative scheme such as that of Chang's,the scheme in this paper is more practicable and reliable and can be applied to the area of copyright protection. 展开更多
关键词 zero-watermark copyright authentication Harris corner detection integer wavelet transform ROBUSTNESS
原文传递
Adaptive Dual Wavelet Threshold Denoising Function Combined with Allan Variance for Tuning FOG-SINS Filter 被引量:1
6
作者 BESSAAD Nassim BAO Qilian +3 位作者 SUN Shuodong DU Yuding LIU Lin HASSAN Mahmood Ul 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第4期434-440,共7页
Allan variance(AV)stochastic process identification method for inertial sensors has successfully combined the wavelet transform denoising scheme.However,the latter usually employs a traditional hard threshold or soft ... Allan variance(AV)stochastic process identification method for inertial sensors has successfully combined the wavelet transform denoising scheme.However,the latter usually employs a traditional hard threshold or soft threshold that presents some mathematical problems.An adaptive dual threshold for discrete wavelet transform(DWT)denoising function overcomes the disadvantages of traditional approaches.Assume that two thresholds for noise and signal and special fuzzy evaluation function for the signal with range between the two thresholds assure continuity and overcome previous difficulties.On the basis of AV,an application for strap-down inertial navigation system(SINS)stochastic model extraction assures more efficient tuning of the augmented 21-state improved exact modeling Kalman filter(IEMKF)states.The experimental results show that the proposed algorithm is superior in denoising performance.Furthermore,the improved filter estimation of navigation solution is better than that of conventional Kalman filter(CKF). 展开更多
关键词 Allan variance(AV) discrete wavelet transform(DWT) adaptive dual threshold fiber optic gyroscope(FOG) strap-down inertial navigation system(SINS) exact modeling filter
原文传递
Application and Analysis of Wavelet Transform in Image Edge Detection
7
作者 Jianfang gao 《International Journal of Technology Management》 2016年第6期22-23,共2页
For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there... For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there are a lot of original information at the edge during image processing, thus, we can get the real image data in terms of the data acquisition. The usage of edge is often in the case of some irregular geometric objects, and we determine the contour of the image by combining with signal transmitted data. At the present stage, there are different algorithms in image edge detection, however, different types of algorithms have divergent disadvantages so It is diffi cult to detect the image changes in a reasonable range. We try to use wavelet transformation in image edge detection, making full use of the wave with the high resolution characteristics, and combining multiple images, in order to improve the accuracy of image edge detection. 展开更多
关键词 EDGE detection wavelet transform IMAGE ANALYSIS adaptive threshold
在线阅读 下载PDF
Wavelet Based Detection of Outliers in Volatility Time Series Models 被引量:1
8
作者 Khudhayr A.Rashedi Mohd Tahir Ismail +1 位作者 Abdeslam Serroukh SAl wadi 《Computers, Materials & Continua》 SCIE EI 2022年第8期3835-3847,共13页
We introduce a new wavelet based procedure for detecting outliers in financial discrete time series.The procedure focuses on the analysis of residuals obtained from a model fit,and applied to the Generalized Autoregre... We introduce a new wavelet based procedure for detecting outliers in financial discrete time series.The procedure focuses on the analysis of residuals obtained from a model fit,and applied to the Generalized Autoregressive Conditional Heteroskedasticity(GARCH)like model,but not limited to these models.We apply the Maximal-Overlap Discrete Wavelet Transform(MODWT)to the residuals and compare their wavelet coefficients against quantile thresholds to detect outliers.Our methodology has several advantages over existing methods that make use of the standard Discrete Wavelet Transform(DWT).The series sample size does not need to be a power of 2 and the transform can explore any wavelet filter and be run up to the desired level.Simulated wavelet quantiles from a Normal and Student t-distribution are used as threshold for the maximum of the absolute value of wavelet coefficients.The performance of the procedure is illustrated and applied to two real series:the closed price of the Saudi Stock market and the S&P 500 index respectively.The efficiency of the proposed method is demonstrated and can be considered as a distinct important addition to the existing methods. 展开更多
关键词 GARCH models MODWT wavelet transform outlier detections quantile threshold
在线阅读 下载PDF
A More Effective Method of Extracting the Characteristic Value of Pulse Wave Signal Based on Wavelet Transform 被引量:1
9
作者 Xuanwei Zhang Yazhou Shang +3 位作者 Daoxin Guo Tianxia Zhao Qiuping Li Xin’an Wang 《Journal of Biomedical Science and Engineering》 2016年第10期9-19,共11页
Pulse wave contains human physiological and pathological information. Different people will exhibit different characteristics, and hence determining the characteristic points of the pulse wave of human physiological h... Pulse wave contains human physiological and pathological information. Different people will exhibit different characteristics, and hence determining the characteristic points of the pulse wave of human physiological health makes sense. It is common that we extract the characteristic value of pulse wave signal with the method based on wavelet transform on a small scale, and then determine the locations of the characteristic points by modulus maxima and modulus minima. Before determining characteristic value by detecting modulus maxima and modulus minima, we need to determine every period of the pulse wave. This paper presents a new kind of adaptive threshold determination method which is more effective. It can accurately determine every period of the pulse wave, and then extract characteristic values by modulus maxima and modulus minima in every period of the pulse wave. The method presented in this paper promotes the research utilizing pulse wave on health life. 展开更多
关键词 Pulse Wave wavelet transform adaptive threshold Characteristic Values
在线阅读 下载PDF
A Novel Color Image Watermarking Method with Adaptive Scaling Factor Using Similarity-Based Edge Region
10
作者 Kali Gurkahraman Rukiye Karakis Hidayet Takci 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期55-77,共23页
This study aimed to deal with three challenges:robustness,imperceptibility,and capacity in the image watermarking field.To reach a high capacity,a novel similarity-based edge detection algorithm was developed that fin... This study aimed to deal with three challenges:robustness,imperceptibility,and capacity in the image watermarking field.To reach a high capacity,a novel similarity-based edge detection algorithm was developed that finds more edge points than traditional techniques.The colored watermark image was created by inserting a randomly generated message on the edge points detected by this algorithm.To ensure robustness and imperceptibility,watermark and cover images were combined in the high-frequency subbands using Discrete Wavelet Transform and Singular Value Decomposition.In the watermarking stage,the watermark image was weighted by the adaptive scaling factor calculated by the standard deviation of the similarity image.According to the results,the proposed edge-based color image watermarking technique has achieved high payload capacity,imperceptibility,and robustness to all attacks.In addition,the highest performance values were obtained against rotation attack,to which sufficient robustness has not been reached in the related studies. 展开更多
关键词 Image watermarking edge detection discrete wavelet transform singular value decomposition adaptive scaling factor
在线阅读 下载PDF
基于小波去噪与同态滤波的带钢缺陷图像增强
11
作者 李恒 崔莹 +1 位作者 赵磊 刘辉 《沈阳工业大学学报》 北大核心 2025年第3期369-376,共8页
【目的】钢铁工业作为我国经济发展的支柱产业之一,在整个制造业中具有无可取代的地位。热轧带钢具有包容覆盖能力强、便于加工、节省材料等优点,是生产其他钢产品的主要原材料,提高带钢产品的表面质量是提高钢铁产品质量的重要环节。... 【目的】钢铁工业作为我国经济发展的支柱产业之一,在整个制造业中具有无可取代的地位。热轧带钢具有包容覆盖能力强、便于加工、节省材料等优点,是生产其他钢产品的主要原材料,提高带钢产品的表面质量是提高钢铁产品质量的重要环节。由于受到生产、加工、拍摄等多种因素的影响,原始带钢表面缺陷图像亮度不均匀、缺陷区域与非缺陷区域对比度较低,导致缺陷信息不够清晰、不便于检测。针对上述问题提出了一种基于小波去噪与改进同态滤波相结合的带钢表面缺陷图像增强算法。【方法】算法采用二级小波变换将原始图像分解为低频分量和高频分量。低频分量包含原图的主要信息,对低频分量进行增强处理以提升图像的整体效果。分别采用改进的同态滤波算法以及限制对比度自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法对低频分量进行增强,在均衡图像亮度的同时提高了整体对比度,并将上述两种算法处理后的低频图像基于适当的权重进行图像融合,得到增强后的低频分量。而高频分量包含图像的细节信息以及噪声,对高频分量使用了改进的阈值函数提升去噪效果,并较好地保留了边缘细节。将处理后的低频分量和高频分量通过小波重构得到最终的增强图像。【结果】通过主观视觉评价和客观评价指标对算法处理结果进行多组对比分析,与其他算法结果相比,经本文算法增强后的各类带钢表面缺陷图像亮度均明显提升,且整体亮度保持均衡,同时提高了对比度,图像的纹理细节和缺陷信息也更加明显。采用通用指标均方误差(mean square error,MSE)、峰值信噪比(peak signal to noise ratio,PSNR)和图像信息熵(image entropy,IE)对算法进行评估,综合分析各参数可知,本文算法对提高对比度、降低噪声效果较为显著,同时保留了更多的细节信息,失真度较小。【结论】实验结果表明,本文算法有效改善了带钢表面缺陷图像亮度不均匀的问题,在提高了整体对比度的同时提升了去噪效果,使缺陷信息和边缘细节得到显著增强,并且适用于多种类型的带钢表面缺陷检测。 展开更多
关键词 小波变换 同态滤波 阈值去噪 图像增强 带钢 表面缺陷 对比度自适应直方图均衡化 小波重构
在线阅读 下载PDF
基于自适应阈值的型钢精确角点FAST检测算法
12
作者 包家汉 孙德尚 +1 位作者 黄建中 胡政 《上海交通大学学报》 北大核心 2025年第5期691-702,共12页
基于机器视觉的在线型钢平直度检测中,对型钢图像关键角点快速、准确地提取是实现精确检测的关键技术问题.针对加速分割检验特征提取(FAST)算法需要人工设定角点筛选阈值和角点提取存在大量伪角点的问题,提出一种自适应阈值生成及校正策... 基于机器视觉的在线型钢平直度检测中,对型钢图像关键角点快速、准确地提取是实现精确检测的关键技术问题.针对加速分割检验特征提取(FAST)算法需要人工设定角点筛选阈值和角点提取存在大量伪角点的问题,提出一种自适应阈值生成及校正策略,能够在自动获取初始阈值的基础上,根据角点数是否达到初始角点集要求对阈值实时校正直至达到适当值,以减少关键角点遗漏.在采用FAST提取角点的基础上,利用最小核心值相似区域(SUSAN)算法剔除伪角点,以保证关键角点提取的有效性.试验证明,这种基于自适应阈值的FAST角点检测算法(FAST-A),在检测环境和对象特性发生变化时,仍然可以准确、快速地检测到型钢关键角点,在为型钢平直度检测实时提供精确角点的基础上,提高角点提取的自适应性. 展开更多
关键词 型钢 角点检测 加速分割检验特征提取算法 最小核心值相似区域算法 自适应阈值
在线阅读 下载PDF
基于反行波波前瞬时能量谱的深远海风电经柔直并网系统的双端行波故障测距方法
13
作者 刘乐 陈旭明 +5 位作者 康小宁 马晓伟 李诗闯 赵勃扬 李昕盈 刘鑫 《电力自动化设备》 北大核心 2025年第3期86-94,共9页
现有的行波测距方法的精确性和可靠性受到保护采样频率、强噪声干扰、短故障距离、高过渡电阻等因素的严重影响,对此提出一种基于小波自适应阈值降噪(AWTD)和结合变分模态分解(VMD)的Hilbert变换的双端行波故障测距方法。利用AWTD算法... 现有的行波测距方法的精确性和可靠性受到保护采样频率、强噪声干扰、短故障距离、高过渡电阻等因素的严重影响,对此提出一种基于小波自适应阈值降噪(AWTD)和结合变分模态分解(VMD)的Hilbert变换的双端行波故障测距方法。利用AWTD算法对故障反行波数据进行降噪预处理。通过VMD算法提取蕴含故障距离信息的高频本征模态函数。利用Hilbert变换获得第5层本征模态函数的瞬时能量谱,并通过瞬时能量谱的最大值实现对线路两端反行波波头的标定,得到行波抵达保护测量点的精确时间,从而结合线路两端行波波速度预测故障距离。在PSCAD/EMTDC与RTDS仿真平台中搭建双端与三端典型深远海风电并网模型进行大量测试,结果表明,所提测距方法不受故障电阻、故障类型的影响,在不同采样频率、近端故障、强噪声干扰与实时仿真环境下,均能实现精准的故障定位,具有一定工程应用价值。 展开更多
关键词 深远海风电 行波故障测距 小波自适应阈值降噪 变分模态分解 HILBERT变换 瞬时能量谱
在线阅读 下载PDF
自适应复杂光照的视觉SLAM算法
14
作者 吕艳辉 钟强 《火力与指挥控制》 北大核心 2025年第8期114-122,共9页
针对视觉同步定位与地图构建算法在低光照和高光照场景下会定位失败和跟踪丢失的问题,提出一种自适应复杂光照的SLAM算法;提出一种全局自适应图像增强算法,利用改进的自适应全局色调映射和自适应gamma变换调节亮度,再使用CLAHE方法调节... 针对视觉同步定位与地图构建算法在低光照和高光照场景下会定位失败和跟踪丢失的问题,提出一种自适应复杂光照的SLAM算法;提出一种全局自适应图像增强算法,利用改进的自适应全局色调映射和自适应gamma变换调节亮度,再使用CLAHE方法调节对比度;提出自适应阈值算法计算FAST角点检测阈值。实验结果表明,与原算法相比,在相应数据集的4个序列上,绝对轨迹误差的均方根误差平均降低了49.85%。 展开更多
关键词 ORB-SLAM3 全局自适应图像增强 CLAHE 自适应阈值 FAST角点检测
在线阅读 下载PDF
基于改进BP神经网络的无线通信网络多频段弱信号检测技术
15
作者 彭多多 《技术与市场》 2025年第9期1-8,共8页
针对复杂电磁环境下无线通信信号检测性能不足的问题,提出一种基于深度神经网络优化的智能信号检测系统。系统采用模块化架构设计,其中信号采集与识别模块通过协同工作机制实现电磁环境动态感知与信号捕获;数据预处理模块创新性地融合... 针对复杂电磁环境下无线通信信号检测性能不足的问题,提出一种基于深度神经网络优化的智能信号检测系统。系统采用模块化架构设计,其中信号采集与识别模块通过协同工作机制实现电磁环境动态感知与信号捕获;数据预处理模块创新性地融合小波包分解与自适应动态阈值算法,有效提升低信噪比条件下的信号特征提取能力,核心检测算法采用改进的深度信念网络架构,通过引入注意力机制和残差连接,显著提高信号检测准确性与抗干扰能力;信号识别模块构建了多层特征融合的BP神经网络分类器,支持二进制移相键控(BPSK)、正交相移键控(QPSK)、正交频分复用技术(OFDM)等主流调制信号的自动识别。系统具备在线学习能力,可通过持续优化网络参数实现环境自适应。 展开更多
关键词 弱信号检测 BP神经网络 小波包分解 能量比 自适应阈值
在线阅读 下载PDF
基于改进拉普拉斯变换的PCB电路边缘检测方法 被引量:1
16
作者 陈泽明 单文桃 +1 位作者 徐成 张陈 《激光杂志》 北大核心 2025年第2期82-87,共6页
针对PCB板中存在复杂纹理、细微瑕疵及其多样性的问题,提出一种专为PCB板内部电路设计的边缘检测方法。首先,采用自适应局部降噪滤波对图像进行预处理,降低噪声干扰。其次,通过对拉普拉斯变换结果取绝对值,增强边缘信息。接着,引入直线... 针对PCB板中存在复杂纹理、细微瑕疵及其多样性的问题,提出一种专为PCB板内部电路设计的边缘检测方法。首先,采用自适应局部降噪滤波对图像进行预处理,降低噪声干扰。其次,通过对拉普拉斯变换结果取绝对值,增强边缘信息。接着,引入直线检测核进行二次卷积运算,并计算结果的“欧几里德范数”,进一步突出边缘特征。最后,通过局部阈值分割技术,精确提取电路边缘。实验结果表明,与传统边缘检测算法相比,该方法的抗干扰性能提升1.5倍,对PCB板电路边缘检测效果较好。 展开更多
关键词 PCB板 边缘检测 自适应局部降噪滤波 拉普拉斯变换 局部阈值分割
原文传递
基于改进小波阈值的TDLAS系统一次谐波降噪算法研究
17
作者 方启明 于庆 张书林 《工矿自动化》 北大核心 2025年第10期78-84,103,共8页
煤矿井下环境复杂,光源波动、噪声及环境干扰等因素均会对可调谐半导体激光吸收光谱(TDLAS)系统造成影响,导致其一次谐波光谱信号信噪比降低,严重制约气体检测的精度与稳定性。针对上述问题,提出一种基于改进小波阈值的TDLAS系统一次谐... 煤矿井下环境复杂,光源波动、噪声及环境干扰等因素均会对可调谐半导体激光吸收光谱(TDLAS)系统造成影响,导致其一次谐波光谱信号信噪比降低,严重制约气体检测的精度与稳定性。针对上述问题,提出一种基于改进小波阈值的TDLAS系统一次谐波降噪算法。首先,通过枚举算法确定最优小波基与分解层数,得到适配一次谐波光谱信号的最优参数。然后,构建连续可导的阈值函数,解决硬阈值突变与软阈值细节损失的问题。最后,结合一次谐波光谱信号的局部方差设计自适应阈值,使阈值随信号局部特征动态调整,实现噪声与有效信号的精准分离。仿真实验结果表明:与传统小波阈值算法相比,改进小波阈值降噪算法的信噪比提升19.03 dB,均方误差降低98.75%,波形相似系数提升0.0833,降噪性能优于传统小波阈值算法。甲烷检测结果表明:降噪信号在频段上的噪声能量大幅度减少,有用信号集中于目标频段,说明改进小波阈值降噪算法能够有效抑制一次谐波信号噪声。 展开更多
关键词 可调谐半导体激光吸收光谱 小波变换 改进小波阈值 硬阈值函数 软阈值函数 一次谐波光谱信号 自适应阈值
在线阅读 下载PDF
基于IPSO-VMD联合小波阈值的超低空磁异常信号去噪方法
18
作者 杨帆 徐春雨 李肃义 《电子测量与仪器学报》 北大核心 2025年第6期204-211,共8页
变分模态分解(VMD)方法在超低空磁异常信号去噪中具有较好的模态分解效果,然而在实际探测中需要依赖人工设定惩罚因子和模态分解参数,且磁异常信号微弱、环境噪声复杂。针对上述问题,提出了一种改进的粒子群优化变分模态分解(IPSO-VMD)... 变分模态分解(VMD)方法在超低空磁异常信号去噪中具有较好的模态分解效果,然而在实际探测中需要依赖人工设定惩罚因子和模态分解参数,且磁异常信号微弱、环境噪声复杂。针对上述问题,提出了一种改进的粒子群优化变分模态分解(IPSO-VMD)联合小波阈值的去噪方法。首先,通过引入自适应惯性权重和学习因子策略,利用排列熵作为自适应函数,实现了对上述参数自适应。之后,采用最优参数组合对信号进行分解,并对异常分量应用小波阈值去噪处理。最终,将信号重构并获得去噪后的信号。仿真实验结果表明,该方法相比其他方法将信噪比提升了约9.44 dB,相关系数达到约0.74,获得了良好的去噪效果。通过野外实验表明,去噪后的实测信号磁异常位置明显,有效降低了环境噪声对信号的干扰,显示出在野外超低空磁目标勘探中的应用潜力。 展开更多
关键词 超低空磁异常探测 改进粒子群优化(IPSO) 变分模态分解(VMD) 参数自适应 小波阈值
原文传递
基于Harris和SIFT的风机叶片检测图像处理 被引量:1
19
作者 刘岩彬 王勇劲 +1 位作者 陈学云 麻守孝 《计算机仿真》 2025年第4期83-87,共5页
风机叶片细长尺寸大的结构使得接触式传感器检测系统安装困难,同时传感器也会加剧叶片运行的不平衡性,现有基于机器视觉的非接触式方法的图像采集也无法采集叶片全貌,导致对于风机叶片运行时的动态监测手段缺失。提出一种基于视频拼接... 风机叶片细长尺寸大的结构使得接触式传感器检测系统安装困难,同时传感器也会加剧叶片运行的不平衡性,现有基于机器视觉的非接触式方法的图像采集也无法采集叶片全貌,导致对于风机叶片运行时的动态监测手段缺失。提出一种基于视频拼接、长尺寸目标的信息采集方法,通过OpenCV与Python联合开发,经先验去雾后利用Harris角点检测和SIFT将分散图像拼接成整体图像,并进行多重离散小波变换与逆变换增强图像质量。结果表明,上述方法能够有效采集并保留完整的叶片信息,尤其是完整的叶片边缘信息与叶片损伤信息,对基于机器视觉检测叶片的潜在缺陷或损伤提供有效的数据支撑,进而保证风机叶片安全稳定运行。 展开更多
关键词 风力机叶片 角点检测 离散小波变换
在线阅读 下载PDF
基于改进Shi-Tomasi水接触角角点检测方法研究
20
作者 顾硕 王军 孙晓红 《计算机仿真》 2025年第9期313-317,491,共6页
针对Shi-Tomasi的水滴接触角角点检测方法准确度较低,检测结果鲁棒性较差问题,提出一种改进Shi-Tomasi的水滴接触角角点的检测方法。首先Shi-Tomasi算法易受到噪声影响,采用小波阈值降噪进行图像降噪处理,将传统硬阈值方法改进为采用半... 针对Shi-Tomasi的水滴接触角角点检测方法准确度较低,检测结果鲁棒性较差问题,提出一种改进Shi-Tomasi的水滴接触角角点的检测方法。首先Shi-Tomasi算法易受到噪声影响,采用小波阈值降噪进行图像降噪处理,将传统硬阈值方法改进为采用半软阈值和均值滤波相结合。其次为解决Shi-Tomasi算法只在单一尺度下进行角点检测导致其准确度较低的问题,引入高斯图像金字塔进行多尺度计算并改进、简化金字塔,对不同层图像采用不同卷积核处理。最后进行基于梯度方向的改进非极大值抑制操作,以消除重复角点和伪角点,提升角点检测准确性。实验结果表明,上述方法较原算法错检率提升了8.75%,漏检率提升了10.66%,具有一定的抗噪能力。 展开更多
关键词 角点检测 水接触角 高斯金字塔 小波阈值降噪 非极大值抑制
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部