Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-ban...Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.展开更多
In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When...In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.展开更多
To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f...To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.展开更多
Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a sev...Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a severe problem in the development of aerospace relay. Traditional particle impact noise detection (PIND) method for remainder detection is ineffective for small particles, due to its low precision and involvement of subjective factors. An auto-detection method for PIND output signals is proposed in this paper, which is based on direct wavelet de-noising (DWD), cross-correlation analysis (CCA) and homo-filtering (HF), the method enhances the affectivity of PIND test about the small particles. In the end, some practical PIND output signals are analysed, and the validity of this new method is proved.展开更多
Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting...Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.展开更多
Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tari...Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.展开更多
A wavelet method was applied to detect inhomogeneities in daily meteorological series, data which are being increasingly applied in studies of climate extremes. The wavelet method has been applied to a few well- estab...A wavelet method was applied to detect inhomogeneities in daily meteorological series, data which are being increasingly applied in studies of climate extremes. The wavelet method has been applied to a few well- established long-term daily temperature series back to the 18th century, which have been "homogenized" with conventional approaches. Various types of problems remaining in the series were revealed with the wavelet method. Their influences on analyses of change in climate extremes are discussed. The results have importance for understanding issues in conventional climate data processing and for development of improved methods of homogenization in order to improve analysis of climate extremes based on daily data.展开更多
This paper shows the dynamic process of regional disparity of economic development in China in the past 50 years from a new insight by using the rescaled range statistic (R/S) analysis and wavelet analysis of the Thei...This paper shows the dynamic process of regional disparity of economic development in China in the past 50 years from a new insight by using the rescaled range statistic (R/S) analysis and wavelet analysis of the Theil index sequence with different time scales. The main conclusions are: 1) The regional disparity of economic development in China, including the inter-provincial disparity, inter-regional disparity and intra-regional disparity, has existed for many years. Theil index by the comparative price has revealed the true trend for comparative disparity of regional economic development from 1952 to 2000. 2) Decomposition of Theil index indicates that the dynamic trend of comparative inter-provincial disparity in the coastal region is in line with dynamic trend of inter-provincial disparity in the whole China. 3) The R/S analysis results tell us that during 1966-1978, the Hurst exponent H=0.504 approximate to 0.5, which indicates that in that period the evolution of comparative inter-provincial disparity of economic development showed a random characteristic, and in the other periods, i.e. 1952-1965, 1979-1990 and 1991-2000, the Hurst exponent H>0.5, which indicates that in those periods the evolution of the comparative inter-provincial disparity of economic development in China had a long-enduring characteristic. 4) By using wavelet analysis at different time scale, we arrived at a conclusion that the evolutionary process of the disparity of economic development of China is not a simple inverted U shape but a compound of several U shapes. The result tells us that the evolutionary plot of inter-provincial disparity in China follows the inverted U on the whole at the higher scale, 24 ( 16 years). That is to say, the disparity tends to rise in the first stage of economic development, and fall slowly over the peak in the second stage of economic development. However, if we shorten the time scale to 23 ( 8 years), then a link of several U shapes will appear.展开更多
During the monitoring engineering of landslides, the monitoring data of accumulated displacement are usually affected by the external factors. Therefore, the displacement curve always has step-like character, which br...During the monitoring engineering of landslides, the monitoring data of accumulated displacement are usually affected by the external factors. Therefore, the displacement curve always has step-like character, which brings some difficulties to the accurate prediction of landslides. In order to solve this problem, based on the wavelet analysis and cusp catastrophe, a new kind of analysis method is proposed in this article. First, Fourier transform method can be used to extract the frequency component of the curve of monitoring displacement. Second, the wavelet transform was adopted to inspect the breakpoints of signals, which can be used to analyze the cause of the occurrence of the step-like character in the curve of landslide monitoring. Based on the cusp catastrophe theory, a nonlinear dynamic model was established to conduct the simulation calculation of time forecasting of landslides. According to a case study of landslide, the periodical rainfall and reservoir level fluctuation are the main factors leading to the step-like changes in the curve of monitoring displacement. In addition, the results of simulation calculation are in agreement with the fact of local failure of landslides. This method can provide a new analysis way for the time prediction of landslides.展开更多
Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to pr...Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to provide a powerful tool for information analysis and processing. Based on the analysis of the geometric nature of hydrocarbon anomalies and background, Mallat wavelet and symmetric border treatment are selected and data pre-processing (logarithm-normalization) is established. This approach provide good results in Shandong and Inner Mongolia, China. It is demonstrated that this approach overcome the disadvantage of backgound variation in the window (interference in window), used in moving average, frame filtering and spatial and scaling modeling methods.展开更多
This study applies the wavelet analysis to the tidal gauge records, alongshore winds, atmospheric temperature and pressure along the China coast in winter 2008. The analysis results show three events of sea level osci...This study applies the wavelet analysis to the tidal gauge records, alongshore winds, atmospheric temperature and pressure along the China coast in winter 2008. The analysis results show three events of sea level oscillations (SLOs) on the shelf induced by winter storms. The first event occurred from January 9 to 21. The SLO periods were double-peaked at 1.6-5.3 and 7.0-16.0 d with the power densities of 0.04-0.05 and 0.10-0.15 m^2.d, respectively. The second event occurred from February 5 to 18. The SLO period was single-peaked at 2.3-3.5 d with power density of 0.03-0.04 m^2.d. The third event occurred from February 20 to March 8. The SLO periods were double- peaked at 1.5-4.3 and 6.1-8.2 d with the power densities of 0.08-0.11 and 0.02-0.08 me.d, respectively. The SLOs propagated along the coast from Zhejiang in north to Guangdong in south. The phase speeds ranged about 9-29 m/s from Kanmen to Pingtan, 5-11 m/s from Xiamen to Huizhou and 11-22 m/s from Huizhou to Shuidong. The dispersion relation of the SLOs shows their nature of coastal-trapped wave.展开更多
Powdery mildew (Blumeria graminis) is one of the most destructive crop diseases infecting winter wheat plants, and has devastated millions of hectares of farmlands in China. The objective of this study is to detect ...Powdery mildew (Blumeria graminis) is one of the most destructive crop diseases infecting winter wheat plants, and has devastated millions of hectares of farmlands in China. The objective of this study is to detect the disease damage of powdery mildew on leaf level by means of the hyperspectral measurements, particularly using the continuous wavelet analysis. In May 2010, the reflectance spectra and the biochemical properties were measured for 114 leaf samples with various disease severity degrees. A hyperspectral imaging system was also employed for obtaining detailed hyperspectral information of the normal and the pustule areas within one diseased leaf. Based on these spectra data, a continuous wavelet analysis (CWA) was carried out in conjunction with a correlation analysis, which generated a so-called correlation scalogram that summarizes the correlations between disease severity and the wavelet power at different wavelengths and decomposition scales. By using a thresholding approach, seven wavelet features were isolated for developing models in determining disease severity. In addition, 22 conventional spectral features (SFs) were also tested and compared with wavelet features for their efficiency in estimating disease severity. The multivariate linear regression (MLR) analysis and the partial least square regression (PLSR) analysis were adopted as training methods in model mildew on leaf level were found to be closely related with the development. The spectral characteristics of the powdery spectral characteristics of the pustule area and the content of chlorophyll. The wavelet features performed better than the conventional SFs in capturing this spectral change. Moreover, the regression model composed by seven wavelet features outperformed (R2=0.77, relative root mean square error RRMSE=0.28) the model composed by 14 optimal conventional SFs (R2---0.69, RRMSE--0.32) in estimating the disease severity. The PLSR method yielded a higher accuracy than the MLR method. A combination of CWA and PLSR was found to be promising in providing relatively accurate estimates of disease severity of powdery mildew on leaf level.展开更多
By decomposing and reconstructing the runoff information from 1965 to 2007 of the hydrologic stations of Tuotuo River and Zhimenda in the source region of the Yangtze River, and Jimai and Tangnaihai in the source regi...By decomposing and reconstructing the runoff information from 1965 to 2007 of the hydrologic stations of Tuotuo River and Zhimenda in the source region of the Yangtze River, and Jimai and Tangnaihai in the source region of the Yellow River with db3 wavelet, runoff of different hydrologic stations tends to be declining in the seasons of spring flood, summer flood and dry ones except for that in Tuotuo River. The declining flood/dry seasons series was summer 〉 spring 〉 dry; while runoff of Tuotuo River was always increasing in different stages from 1965 to 2007 with a higher increase rate in summer flood seasons than that in spring ones. Complex Morlet wavelet was selected to detect runoff periodicity of the four hydrologic stations mentioned above. Over all seasons the periodicity was 11-12 years in the source region of the Yellow River. For the source region of the Yangtze River the periodicity was 4-6 years in the spring flood seasons and 13-14 years in the summer flood seasons. The differences of variations of flow periodicity between the upper catchment areas of the Yellow River and the Yangtze River and between seasons were considered in relation to glacial melt and annual snowfall and rainfall as providers of water for runoff.展开更多
It has been shown that much dynamic information is hidden in the pressure fluctuation signals of a gas-solid fluidized bed. Unfortunately, due to the random and capricious nature of this signal, it is hard to realize ...It has been shown that much dynamic information is hidden in the pressure fluctuation signals of a gas-solid fluidized bed. Unfortunately, due to the random and capricious nature of this signal, it is hard to realize reliable analysis using traditional signal processing methods such as statistical analysis or spectral analysis, which is done in Fourier domain. Information in different frequency band can be extracted by using wavelet analysis. On the evidence of the composition of the pressure fluctuation signals, energy of low frequency (ELF) is proposed to show the transition of fluidized regimes from bubbling fluidization to turbulent fluidization. Plots are presented to describe the fluidized bed's evolution to help identify the state of different flow regimes and provide a characteristic curve to identify the fluidized status effectively and reliably.展开更多
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin...The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.展开更多
This article attempts to detail time series characteristics of PM2.5 concentration in Guangzhou(China)from 1 June 2012 to 31 May 2013 based on wavelet analysis tools,and discuss its spatial distribution using geograph...This article attempts to detail time series characteristics of PM2.5 concentration in Guangzhou(China)from 1 June 2012 to 31 May 2013 based on wavelet analysis tools,and discuss its spatial distribution using geographic information system software and a modified land use regression model.In this modified model,an important variable(land use data)is substituted for impervious surface area,which can be obtained conveniently from remote sensing imagery through the linear spectral mixture analysis method.Impervious surface has higher precision than land use data because of its sub-pixel level.Seasonal concentration pattern and day-by-day change feature of PM2.5 in Guangzhou with a micro-perspective are discussed and understood.Results include:(1)the highest concentration of PM2.5 occurs in October and the lowest in July,respectively;(2)average concentration of PM2.5 in winter is higher than in other seasons;and(3)there are two high concentration zones in winter and one zone in spring.展开更多
In this study we propose an analytical method based on orthogonal wavelet transforms for detecting harmonic noise and Electromagnetic Interference (EMI) from power supply systems and equipment in coal mines. The metho...In this study we propose an analytical method based on orthogonal wavelet transforms for detecting harmonic noise and Electromagnetic Interference (EMI) from power supply systems and equipment in coal mines. The method will separate interference from signals through wavelet packet decomposition and then accomplish wavelet packet synthesis towards decomposition results after filtering, to remove harmonic noise and electromagnetic interference. Detailed simulation experiments are presented to study power harmonics and Electrical Fast Transient Burst (EFT/B) interference and to validate the effectiveness of our proposed method. The experimental results show that the proposed method, suitable for mutant and non-stationary signal detection, can accurately analyze harmonic interference and EMI in coal mines, as well as establish EMI source models and perform underground Electromagnetic Compatibility (EMC) prediction analyses.展开更多
Roll eccentricity is an important factor causing thickness variations during hot strip rolling and might define the limit of strip thickness control accuracy. An improved multi-resolution wavelet transform algorithm w...Roll eccentricity is an important factor causing thickness variations during hot strip rolling and might define the limit of strip thickness control accuracy. An improved multi-resolution wavelet transform algorithm was proposed to compensate for the roll eccentricity. The wavelet transform method had good localization characteristics in both the time and frequency domains for signal analysis; however, the wavelet method had a frequency-aliasing problem owing to the less than ideal cut-off frequency characteristics of wavelets. This made its component reconstruction of an inaccurate signal. To eliminate inherent frequency aliases in the wavelet transform, fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) were combined with the Mallat algorithm. This synthesis was described in detail. Then, the roll eccentricity component was extracted from rolling force signal. An automatic gauge control (AGC) system added with a multi-resolution wavelet analyzer was designed. Experimental results showed that the anti-aliasing method could greatly restrain the inverse effect of eccentricity and the thickness control accuracy was improved from ±40 μm to ±15 μm.展开更多
This paper analyses the five years’ monitored strains collected from a long-term health monitoring system installed on a bridge with wavelet transform.In the analysis,the monitored strains are pre-processed,features ...This paper analyses the five years’ monitored strains collected from a long-term health monitoring system installed on a bridge with wavelet transform.In the analysis,the monitored strains are pre-processed,features of the monitored data are summarized briefly.The influences of the base functions on the results of wavelet analysis are studied simultaneously.The results show that the db wavelet is a good mother wavelet function in the analysis,and the order N should be larger than 20,but less than 46 in decomposing the monitored strains of the bridge.According to the strain variation features of concrete bridge,the proper decomposition level is 4 in the wavelet multi-resolution analysis.With the present method,the strains caused by random loads and daily sunlight can be accurately extracted from the monitored strains.The decomposed components of the monitored strains show that the amplitudes of the strains caused by random loads,daily sunlight,and annual temperature effect,are about 5 με,25 με,and 50 με respectively.The structural response under random load is smaller than the other parts.展开更多
In this paper, Fourier and Wavelet transformation were adopted to analyze shape char- acteristics, with twelve simple shapes and two types of second phases from real microstructure mor- phology. According to the resul...In this paper, Fourier and Wavelet transformation were adopted to analyze shape char- acteristics, with twelve simple shapes and two types of second phases from real microstructure mor- phology. According to the results of Fast Fourier transformation (FFT), the Fourier descriptors can be used to characterize the shape from the aspects of the first eight Normalization amplitudes, the number of the largest amplitudes to inverse reconstruction, similarity of shapes and profile roughness. And the Diepenbroek Roughness was rewritten by Normalization amplitudes of FFT results. Moreover, Sum Square of Relative Errors (SSRE) of Wavelet transformation (WT) signal sequence, including approximation signals and detail signals, was introduced to evaluate the simi- larity and relative orientation among shapes. As a complement to FFT results, the WT results can retain more detailed information of shapes including their orientations. Besides, the geometric sig- natures of the second phases were extracted by image processing and then were analyzed by means of FFT and WT.展开更多
基金supported by the‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang(Grant No.2023C02018)Zhejiang Provincial Natural Science Foundation of China(Grant No.LTGN23D010002)+2 种基金National Natural Science Foundation of China(Grant No.42371385)Funds of the Natural Science Foundation of Hangzhou(Grant No.2024SZRYBD010001)Nanxun Scholars Program of ZJWEU(Grant No.RC2022010755).
文摘Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.
基金Project(41174103)supported by the National Natural Science Foundation of ChinaProject(2010-211)supported by the Foreign Mineral Resources Venture Exploration Special Fund of China
文摘In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.
文摘To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.
基金Chinese Science Technology and Industry Foundation for National Defense(FEBG27100001)
文摘Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a severe problem in the development of aerospace relay. Traditional particle impact noise detection (PIND) method for remainder detection is ineffective for small particles, due to its low precision and involvement of subjective factors. An auto-detection method for PIND output signals is proposed in this paper, which is based on direct wavelet de-noising (DWD), cross-correlation analysis (CCA) and homo-filtering (HF), the method enhances the affectivity of PIND test about the small particles. In the end, some practical PIND output signals are analysed, and the validity of this new method is proved.
基金funded by National Natural Science Foundation of China (Grant No. 41375038)China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201306040,GYHY201306075)
文摘Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.
基金Under the auspices of the Second-stage Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-XB2-03,KZCX2-YW-127)National Natural Science Foundation of China (No 40671014)Shanghai Academic Discipline Project (Human Geography) (No B410)
文摘Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.
文摘A wavelet method was applied to detect inhomogeneities in daily meteorological series, data which are being increasingly applied in studies of climate extremes. The wavelet method has been applied to a few well- established long-term daily temperature series back to the 18th century, which have been "homogenized" with conventional approaches. Various types of problems remaining in the series were revealed with the wavelet method. Their influences on analyses of change in climate extremes are discussed. The results have importance for understanding issues in conventional climate data processing and for development of improved methods of homogenization in order to improve analysis of climate extremes based on daily data.
基金Under the auspices of National Philosophy and Social Sciences Foundation of China (No. 00BJL051 03BJL027)
文摘This paper shows the dynamic process of regional disparity of economic development in China in the past 50 years from a new insight by using the rescaled range statistic (R/S) analysis and wavelet analysis of the Theil index sequence with different time scales. The main conclusions are: 1) The regional disparity of economic development in China, including the inter-provincial disparity, inter-regional disparity and intra-regional disparity, has existed for many years. Theil index by the comparative price has revealed the true trend for comparative disparity of regional economic development from 1952 to 2000. 2) Decomposition of Theil index indicates that the dynamic trend of comparative inter-provincial disparity in the coastal region is in line with dynamic trend of inter-provincial disparity in the whole China. 3) The R/S analysis results tell us that during 1966-1978, the Hurst exponent H=0.504 approximate to 0.5, which indicates that in that period the evolution of comparative inter-provincial disparity of economic development showed a random characteristic, and in the other periods, i.e. 1952-1965, 1979-1990 and 1991-2000, the Hurst exponent H>0.5, which indicates that in those periods the evolution of the comparative inter-provincial disparity of economic development in China had a long-enduring characteristic. 4) By using wavelet analysis at different time scale, we arrived at a conclusion that the evolutionary process of the disparity of economic development of China is not a simple inverted U shape but a compound of several U shapes. The result tells us that the evolutionary plot of inter-provincial disparity in China follows the inverted U on the whole at the higher scale, 24 ( 16 years). That is to say, the disparity tends to rise in the first stage of economic development, and fall slowly over the peak in the second stage of economic development. However, if we shorten the time scale to 23 ( 8 years), then a link of several U shapes will appear.
基金supported by the National Natural Science Foundation of China (Nos. 40202028, 50609026)Postdoctors Foundation of China (No. 20060400256)Excellent Young Teacher Science and Technology Program of Faculty of Engi-neering, China University of Geosciences
文摘During the monitoring engineering of landslides, the monitoring data of accumulated displacement are usually affected by the external factors. Therefore, the displacement curve always has step-like character, which brings some difficulties to the accurate prediction of landslides. In order to solve this problem, based on the wavelet analysis and cusp catastrophe, a new kind of analysis method is proposed in this article. First, Fourier transform method can be used to extract the frequency component of the curve of monitoring displacement. Second, the wavelet transform was adopted to inspect the breakpoints of signals, which can be used to analyze the cause of the occurrence of the step-like character in the curve of landslide monitoring. Based on the cusp catastrophe theory, a nonlinear dynamic model was established to conduct the simulation calculation of time forecasting of landslides. According to a case study of landslide, the periodical rainfall and reservoir level fluctuation are the main factors leading to the step-like changes in the curve of monitoring displacement. In addition, the results of simulation calculation are in agreement with the fact of local failure of landslides. This method can provide a new analysis way for the time prediction of landslides.
文摘Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to provide a powerful tool for information analysis and processing. Based on the analysis of the geometric nature of hydrocarbon anomalies and background, Mallat wavelet and symmetric border treatment are selected and data pre-processing (logarithm-normalization) is established. This approach provide good results in Shandong and Inner Mongolia, China. It is demonstrated that this approach overcome the disadvantage of backgound variation in the window (interference in window), used in moving average, frame filtering and spatial and scaling modeling methods.
基金The National Basic Research Program of China under contract No.2015CB954004the Natural Science Foundation of China under contract Nos 41276006 and U1405233+1 种基金the US National Science Foundation Award under contract No.AGS-1061998(for Zheng)the China Scholarship Council under contract No.201306310082
文摘This study applies the wavelet analysis to the tidal gauge records, alongshore winds, atmospheric temperature and pressure along the China coast in winter 2008. The analysis results show three events of sea level oscillations (SLOs) on the shelf induced by winter storms. The first event occurred from January 9 to 21. The SLO periods were double-peaked at 1.6-5.3 and 7.0-16.0 d with the power densities of 0.04-0.05 and 0.10-0.15 m^2.d, respectively. The second event occurred from February 5 to 18. The SLO period was single-peaked at 2.3-3.5 d with power density of 0.03-0.04 m^2.d. The third event occurred from February 20 to March 8. The SLO periods were double- peaked at 1.5-4.3 and 6.1-8.2 d with the power densities of 0.08-0.11 and 0.02-0.08 me.d, respectively. The SLOs propagated along the coast from Zhejiang in north to Guangdong in south. The phase speeds ranged about 9-29 m/s from Kanmen to Pingtan, 5-11 m/s from Xiamen to Huizhou and 11-22 m/s from Huizhou to Shuidong. The dispersion relation of the SLOs shows their nature of coastal-trapped wave.
基金the National Natural Science Foundation of China (41101395, 41071276, 31071324)the Beijing Municipal Natural Science Foundation, China (4122032)the National Basic Research Program of China (2011CB311806)
文摘Powdery mildew (Blumeria graminis) is one of the most destructive crop diseases infecting winter wheat plants, and has devastated millions of hectares of farmlands in China. The objective of this study is to detect the disease damage of powdery mildew on leaf level by means of the hyperspectral measurements, particularly using the continuous wavelet analysis. In May 2010, the reflectance spectra and the biochemical properties were measured for 114 leaf samples with various disease severity degrees. A hyperspectral imaging system was also employed for obtaining detailed hyperspectral information of the normal and the pustule areas within one diseased leaf. Based on these spectra data, a continuous wavelet analysis (CWA) was carried out in conjunction with a correlation analysis, which generated a so-called correlation scalogram that summarizes the correlations between disease severity and the wavelet power at different wavelengths and decomposition scales. By using a thresholding approach, seven wavelet features were isolated for developing models in determining disease severity. In addition, 22 conventional spectral features (SFs) were also tested and compared with wavelet features for their efficiency in estimating disease severity. The multivariate linear regression (MLR) analysis and the partial least square regression (PLSR) analysis were adopted as training methods in model mildew on leaf level were found to be closely related with the development. The spectral characteristics of the powdery spectral characteristics of the pustule area and the content of chlorophyll. The wavelet features performed better than the conventional SFs in capturing this spectral change. Moreover, the regression model composed by seven wavelet features outperformed (R2=0.77, relative root mean square error RRMSE=0.28) the model composed by 14 optimal conventional SFs (R2---0.69, RRMSE--0.32) in estimating the disease severity. The PLSR method yielded a higher accuracy than the MLR method. A combination of CWA and PLSR was found to be promising in providing relatively accurate estimates of disease severity of powdery mildew on leaf level.
基金National Key Project of Scientific and Technical Supporting Programs,No.2009BAC61B01
文摘By decomposing and reconstructing the runoff information from 1965 to 2007 of the hydrologic stations of Tuotuo River and Zhimenda in the source region of the Yangtze River, and Jimai and Tangnaihai in the source region of the Yellow River with db3 wavelet, runoff of different hydrologic stations tends to be declining in the seasons of spring flood, summer flood and dry ones except for that in Tuotuo River. The declining flood/dry seasons series was summer 〉 spring 〉 dry; while runoff of Tuotuo River was always increasing in different stages from 1965 to 2007 with a higher increase rate in summer flood seasons than that in spring ones. Complex Morlet wavelet was selected to detect runoff periodicity of the four hydrologic stations mentioned above. Over all seasons the periodicity was 11-12 years in the source region of the Yellow River. For the source region of the Yangtze River the periodicity was 4-6 years in the spring flood seasons and 13-14 years in the summer flood seasons. The differences of variations of flow periodicity between the upper catchment areas of the Yellow River and the Yangtze River and between seasons were considered in relation to glacial melt and annual snowfall and rainfall as providers of water for runoff.
文摘It has been shown that much dynamic information is hidden in the pressure fluctuation signals of a gas-solid fluidized bed. Unfortunately, due to the random and capricious nature of this signal, it is hard to realize reliable analysis using traditional signal processing methods such as statistical analysis or spectral analysis, which is done in Fourier domain. Information in different frequency band can be extracted by using wavelet analysis. On the evidence of the composition of the pressure fluctuation signals, energy of low frequency (ELF) is proposed to show the transition of fluidized regimes from bubbling fluidization to turbulent fluidization. Plots are presented to describe the fluidized bed's evolution to help identify the state of different flow regimes and provide a characteristic curve to identify the fluidized status effectively and reliably.
基金National Natural Science Foundation of China, No.40335046
文摘The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.
基金This work is supported by the National Nature Science Foundation of China[grant number:41201432],the National Science Foundation of Tibet[grant number:2016ZR-TU-05]the Foundation for Innovative Research for Young Teachers in Higher Educational Institutions of Tibet[grant number:QCZ2016-07].
文摘This article attempts to detail time series characteristics of PM2.5 concentration in Guangzhou(China)from 1 June 2012 to 31 May 2013 based on wavelet analysis tools,and discuss its spatial distribution using geographic information system software and a modified land use regression model.In this modified model,an important variable(land use data)is substituted for impervious surface area,which can be obtained conveniently from remote sensing imagery through the linear spectral mixture analysis method.Impervious surface has higher precision than land use data because of its sub-pixel level.Seasonal concentration pattern and day-by-day change feature of PM2.5 in Guangzhou with a micro-perspective are discussed and understood.Results include:(1)the highest concentration of PM2.5 occurs in October and the lowest in July,respectively;(2)average concentration of PM2.5 in winter is higher than in other seasons;and(3)there are two high concentration zones in winter and one zone in spring.
基金the financial support for our work by the Doctoral Foundation of Ministry of Education of China (No.200802900008)
文摘In this study we propose an analytical method based on orthogonal wavelet transforms for detecting harmonic noise and Electromagnetic Interference (EMI) from power supply systems and equipment in coal mines. The method will separate interference from signals through wavelet packet decomposition and then accomplish wavelet packet synthesis towards decomposition results after filtering, to remove harmonic noise and electromagnetic interference. Detailed simulation experiments are presented to study power harmonics and Electrical Fast Transient Burst (EFT/B) interference and to validate the effectiveness of our proposed method. The experimental results show that the proposed method, suitable for mutant and non-stationary signal detection, can accurately analyze harmonic interference and EMI in coal mines, as well as establish EMI source models and perform underground Electromagnetic Compatibility (EMC) prediction analyses.
基金Item Sponsored by National Natural Science Foundation of China (60774032)Provincial Natural Science Foundation of Guangdong Province of China (06025724)+1 种基金Key Project of Guangzhou Scientific Program of China (2007Z2-D0121)Special Research Fund of Ministry of Education of China for College Doctoral Subjects (20070561006)
文摘Roll eccentricity is an important factor causing thickness variations during hot strip rolling and might define the limit of strip thickness control accuracy. An improved multi-resolution wavelet transform algorithm was proposed to compensate for the roll eccentricity. The wavelet transform method had good localization characteristics in both the time and frequency domains for signal analysis; however, the wavelet method had a frequency-aliasing problem owing to the less than ideal cut-off frequency characteristics of wavelets. This made its component reconstruction of an inaccurate signal. To eliminate inherent frequency aliases in the wavelet transform, fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) were combined with the Mallat algorithm. This synthesis was described in detail. Then, the roll eccentricity component was extracted from rolling force signal. An automatic gauge control (AGC) system added with a multi-resolution wavelet analyzer was designed. Experimental results showed that the anti-aliasing method could greatly restrain the inverse effect of eccentricity and the thickness control accuracy was improved from ±40 μm to ±15 μm.
文摘This paper analyses the five years’ monitored strains collected from a long-term health monitoring system installed on a bridge with wavelet transform.In the analysis,the monitored strains are pre-processed,features of the monitored data are summarized briefly.The influences of the base functions on the results of wavelet analysis are studied simultaneously.The results show that the db wavelet is a good mother wavelet function in the analysis,and the order N should be larger than 20,but less than 46 in decomposing the monitored strains of the bridge.According to the strain variation features of concrete bridge,the proper decomposition level is 4 in the wavelet multi-resolution analysis.With the present method,the strains caused by random loads and daily sunlight can be accurately extracted from the monitored strains.The decomposed components of the monitored strains show that the amplitudes of the strains caused by random loads,daily sunlight,and annual temperature effect,are about 5 με,25 με,and 50 με respectively.The structural response under random load is smaller than the other parts.
基金the support received from the National Natural Science Foundation of China (No.51275414)the Aeronautical Science Foundation of China (No.2011ZE53059)
文摘In this paper, Fourier and Wavelet transformation were adopted to analyze shape char- acteristics, with twelve simple shapes and two types of second phases from real microstructure mor- phology. According to the results of Fast Fourier transformation (FFT), the Fourier descriptors can be used to characterize the shape from the aspects of the first eight Normalization amplitudes, the number of the largest amplitudes to inverse reconstruction, similarity of shapes and profile roughness. And the Diepenbroek Roughness was rewritten by Normalization amplitudes of FFT results. Moreover, Sum Square of Relative Errors (SSRE) of Wavelet transformation (WT) signal sequence, including approximation signals and detail signals, was introduced to evaluate the simi- larity and relative orientation among shapes. As a complement to FFT results, the WT results can retain more detailed information of shapes including their orientations. Besides, the geometric sig- natures of the second phases were extracted by image processing and then were analyzed by means of FFT and WT.