期刊文献+
共找到8,382篇文章
< 1 2 250 >
每页显示 20 50 100
Distributed waveform generation and digitization system based on transparent transmission
1
作者 Lei Lang Kai Chen +2 位作者 Dou Zhu Jing Wang Yi-Chen Yang 《Nuclear Science and Techniques》 2025年第3期60-68,共9页
Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which... Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which interfaces with various data converters and exchanges data with a backend central processor.However,the streaming readout architecture has become a new paradigm for several experiments benefiting from advancements in data transmission and computing technologies.This paper proposes a scalable distributed waveform generation and digitization system that utilizes fiber optical connections for data transmission between frontend nodes and a central processor.By utilizing transparent transmission on top of the data link layer,the clock and data ports of the converters in the frontend nodes are directly mapped to the FPGA firmware at the backend.This streaming readout architecture reduces the complexity of frontend development and maintains the data conversion in proximity to the detector.Each frontend node uses a local clock for waveform digitization.To translate the timing information of events in each channel into the system clock domain within the backend central processing FPGA,a novel method is proposed and evaluated using a demonstrator system. 展开更多
关键词 Transparent transmission waveform generation waveform digitization Distributed system
在线阅读 下载PDF
Enhancing flexibility and system performance in 6G and beyond: A user-based numerology and waveform approach
2
作者 Mohamed S.Sayed Hatem M.Zakaria Abdelhady M.Abdelhady 《Digital Communications and Networks》 2025年第4期974-990,共17页
A Mixed Numerology OFDM(MN-OFDM)system is essential in 6G and beyond.However,it encounters challenges due to Inter-Numerology Interference(INI).The upcoming 6G technology aims to support innovative applications with h... A Mixed Numerology OFDM(MN-OFDM)system is essential in 6G and beyond.However,it encounters challenges due to Inter-Numerology Interference(INI).The upcoming 6G technology aims to support innovative applications with high data rates,low latency,and reliability.Therefore,effective handling of INI is crucial to meet the diverse requirements of these applications.To address INI in MN-OFDM systems,this paper proposes a User-Based Numerology and Waveform(UBNW)approach that uses various OFDM-based waveforms and their parameters to mitigate INI.By assigning a specific waveform and numerology to each user,UBNW mitigates INI,optimizes service characteristics,and addresses user demands efficiently.The required Guard Bands(GB),expressed as a ratio of user bandwidth,vary significantly across different waveforms at an SIR of 25 dB.For instance,OFDM-FOFDM needs only 2.5%,while OFDM-UFMC,OFDM-WOLA,and conventional OFDM require 7.5%,24%,and 40%,respectively.The time-frequency efficiency also varies between the waveforms.FOFDM achieves 85.6%,UFMC achieves 81.6%,WOLA achieves 70.7%,and conventional OFDM achieves 66.8%.The simulation results demonstrate that the UBNW approach not only effectively mitigates INI but also enhances system flexibility and time-frequency efficiency while simultaneously reducing the required GB. 展开更多
关键词 6G Artificial intelligence and machine learning Inter-numerology interference Mixed numerology OFDM Multiple waveforms User-based numerology and waveform
在线阅读 下载PDF
Three-dimensional time-domain full waveform inversion for sound speed and attenuation reconstruction in ultrasound computed tomography
3
作者 Zilong Liu Zhijian Tan +1 位作者 Songde Liu Chao Tian 《中国科学技术大学学报》 北大核心 2025年第6期11-20,10,I0001,共12页
Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnos... Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnostic accuracy and therapy planning.Full waveform inversion(FWI)is a promising USCT image reconstruction method that optimizes the parameter fields of a wave propagation model via gradient-based optimization.However,twodimensional FWI methods are limited by their inability to account for three-dimensional wave propagation in the elevation direction,resulting in image artifacts.To address this problem,we propose a three-dimensional time-domain full waveform inversion algorithm to reconstruct the SS and AA distributions on the basis of a fractional Laplacian wave equation,adjoint field formulation,and gradient descent optimization.Validated by two sets of simulations,the proposed algorithm has potential for generating high-resolution and quantitative SS and AA distributions.This approach holds promise for clinical USCT applications,assisting early disease detection,precise abnormality localization,and optimized treatment planning,thus contributing to better healthcare outcomes. 展开更多
关键词 full waveform inversion ultrasound computed tomography speed of sound acoustic attenuation inverse problems
在线阅读 下载PDF
Performance evaluation of the waveform stacking-based microseismic location method in the southern Sichuan Basin of China
4
作者 Lei Li Jiacheng Zhang +4 位作者 Yuyang Tan Ling Peng Junlun Li Jincheng Xu Jianxin Liu 《Earthquake Science》 2025年第5期427-440,共14页
Seismic source locations can characterize the spatial and temporal distributions of seismic sources,and can provide important basic data for earthquake disaster monitoring,fault activity characterization,and fracture ... Seismic source locations can characterize the spatial and temporal distributions of seismic sources,and can provide important basic data for earthquake disaster monitoring,fault activity characterization,and fracture growth interpretation.Waveform stacking-based location methods invert the source locations by focusing the source energy with multichannel waveforms,and these methods exhibit a high level of automation and noise-resistance.Taking the cross-correlation stacking(CCS)method as an example,this work attempts to study the influential factors of waveform stacking-based methods,and introduces a comprehensive performance evaluation scheme based on multiple parameters and indicators.The waveform data are from field monitoring of induced microseismicity in the Changning region(southern Sichuan Basin of China).Synthetic and field data tests reveal the impacts of three categories of factors on waveform stacking-based location:velocity model,monitoring array,and waveform complexity.The location performance is evaluated and further improved in terms of the source imaging resolution and location error.Denser array monitoring contributes to better constraining source depth and location reliability,but the combined impact of multiple factors,such as velocity model uncertainty and multiple seismic phases,increases the complexity of locating field microseismic events.Finally,the aspects of location uncertainty,phase detection,and artificial intelligencebased location are discussed. 展开更多
关键词 seismic location waveform stacking induced microseismicity performance evaluation cross-correlation stacking
在线阅读 下载PDF
Stabilized adaptive waveform inversion for enhanced robustness in Gaussian penalty matrix parameterization and transcranial ultrasound imaging
5
作者 Jun-Jie Zhao Shan-Mu Jin +2 位作者 Yue-Kun Wang Yu Wang Ya-Hui Peng 《Chinese Physics B》 2025年第8期606-621,共16页
Achieving high-resolution intracranial imaging in a safe and portable manner is critical for the diagnosis of intracranial diseases,preoperative planning of craniotomies and intraoperative management during craniotomy... Achieving high-resolution intracranial imaging in a safe and portable manner is critical for the diagnosis of intracranial diseases,preoperative planning of craniotomies and intraoperative management during craniotomy procedures.Adaptive waveform inversion(AWI),a variant of full waveform inversion(FWI),has shown potential in intracranial ultrasound imaging.However,the robustness of AWI is affected by the parameterization of the Gaussian penalty matrix and the challenges posed by transcranial scenarios.Conventional AWI struggles to produce accurate images in these cases,limiting its application in critical medical settings.To address these issues,we propose a stabilized adaptive waveform inversion(SAWI)method,which introduces a user-defined zero-lag position for theWiener filter.Numerical experiments demonstrate that SAWI can achieve accurate imaging under Gaussian penalty matrix parameter settings where AWI fails,perform successful transcranial imaging in configurations where AWI cannot,and maintain the same imaging accuracy as AWI.The advantage of this method is that it achieves these advancements without modifying the AWI framework or increasing computational costs,which helps to promote the application of AWI in medical fields,particularly in transcranial scenarios. 展开更多
关键词 ultrasound brain imaging full waveform inversion ROBUSTNESS PARAMETERIZATION
原文传递
Modulated waveforms for harmonic minimization of far-field signals in amplitude-modulated heating of the ionosphere
6
作者 ZhiJian Lu Yong Li +6 位作者 Hui Li Jian Wu JingFeng Yao XingBao Lyu ChengXun Yuan ZhongXiang Zhou Ying Wang 《Earth and Planetary Physics》 2025年第2期387-399,共13页
This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radi... This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal. 展开更多
关键词 ELF/VLF HARMONIC amplitude-modulated heating modulated waveforms
在线阅读 下载PDF
Dynamic response characteristics of metal cylindrical shell driven by explosive charge with waveform regulator
7
作者 Weixin Bi Weibing Li +2 位作者 Junbao Li Heyang Xu Wenbin Li 《Defence Technology(防务技术)》 2025年第10期84-99,共16页
Waveform regulator in charge is a method that can realize multi-source detonation wave superposition through a single point detonation.The method does not need to weaken the strength of shell,and relies on the high st... Waveform regulator in charge is a method that can realize multi-source detonation wave superposition through a single point detonation.The method does not need to weaken the strength of shell,and relies on the high stress generated by superposition to cut shell into regular fragments.Additionally,it can be combined with different initiation methods to alter the fragmentation outcomes.In this study,aiming at the fracture strain of metal cylindrical shell driven by explosive charge with waveform regulator,theoretical analysis was first adopted to obtain the prediction model of the fracture strain of cylindrical shell with waveform regulator and the model of the axial distribution of the stress concentration factor.On this basis,both theoretical analysis and numerical models were utilized to investigate the effect of waveform regulator on the initial velocity of fragments.Finally,experiments were conducted to validate the fracture strain prediction model for cylindrical shell with waveform regulator.The research results show that the collision angles of the detonation waves at different axial positions are different,which leads to the stress concentration factor on the shell presenting a trend of gradually decreasing,then sharply increasing,and then rapidly decreasing along the axial direction.Additionally,the changes in the slot spacing and the thickness of outer charge will also affect the stress concentration factor,and the influence of outer charge thickness is relatively large.The smaller the ratio of charge volume to waveform regulator volume,the larger the axial sparse wave intensity and the more the fragment initial velocity decrease.From the initiation end to the non-initiation end,the failure modes of the shell sequentially change from pure shear,to mixed tensile-shear,and finally to pure tensile failure.The experimental results are in good agreement with the calculated results of the fracture strain model,and the maximum relative error is less than 10%,which indicates that the fracture strain prediction model of the cylindrical shell with waveform regulator established in this paper by considering the increase of elastic energy per unit volume caused by stress concentration on the shell is reliable. 展开更多
关键词 Cylindrical shell waveform regulator Stress concentration Fracture strain
在线阅读 下载PDF
Full waveform inversion with fractional anisotropic total p-variation regularization
8
作者 Bo Li Xiao-Tao Wen +2 位作者 Yu-Qiang Zhang Zi-Yu Qin Zhi-Di An 《Petroleum Science》 2025年第8期3266-3278,共13页
Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model ... Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model with high accuracy.However,due to inaccurate initial models,the absence of low-frequency data,and incomplete observational data,full waveform inversion(FWI)exhibits pronounced nonlinear characteristics.When the strata are buried deep,the inversion capability of this method is constrained.To enhance the accuracy and precision of FWI,this paper introduces a novel approach to address the aforementioned challenges—namely,a fractional-order anisotropic total p-variation regularization for full waveform inversion(FATpV-FWI).This method incorporates fractional-order total variation(TV)regularization to construct the inversion objective function,building upon TV regularization,and subsequently employs the alternating direction multiplier method for solving.This approach mitigates the step effect stemming from total variation in seismic inversion,thereby facilitating the reconstruction of sharp interfaces of geophysical parameters while smoothing background variations.Simultaneously,replacing integer-order differences with fractional-order differences bolsters the correlation among seismic data and diminishes the scattering effect caused by integer-order differences in seismic inversion.The outcomes of model tests validate the efficacy of this method,highlighting its ability to enhance the overall accuracy of the inversion process. 展开更多
关键词 Full waveform inversion Anisotropic total p-variation Fractional-order differences Sparse regularization
原文传递
Radar pulse waveform design method based on complementary amplitude coding
9
作者 XIE Ailun LIU Xiaobin +3 位作者 WU Qihua ZHAO Feng QIAO Zhenyu XIAO Shunping 《Journal of Systems Engineering and Electronics》 2025年第3期671-680,共10页
Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in t... Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in this paper,which can be used to reduce the sidelobe level of multiple waveforms.First,the CAC model is constructed.Then,the waveform design problem is transformed into a nonlinear optimization problem by constructing an objective function using the two indicators of peak-to-sidelobe ratio(PSLR)and integrated sidelobe ratio(ISLR).Finally,genetic algorithm(GA)is used to solve the optimization problem to get the best CAC waveforms.Simulations and experiments are conducted to verify the effectiveness of the proposed method. 展开更多
关键词 waveform design low sidelobe complementary amplitude coding(CAC) genetic algorithm(GA)
在线阅读 下载PDF
Sobolev space norm regularized full waveform inversion for ultrasound computed tomography
10
作者 Panpan Li Yubing Li +2 位作者 Chang Su Zeyuan Dong Weijun Lin 《Chinese Physics B》 2025年第5期444-456,共13页
Full waveform inversion(FWI)is a complex data fitting process based on full wavefield modeling,aiming to quantitatively reconstruct unknown model parameters from partial waveform data with high-resolution.However,this... Full waveform inversion(FWI)is a complex data fitting process based on full wavefield modeling,aiming to quantitatively reconstruct unknown model parameters from partial waveform data with high-resolution.However,this process is highly nonlinear and ill-posed,therefore achieving high-resolution imaging of complex biological tissues within a limited number of iterations remains challenging.We propose a multiscale frequency–domain full waveform inversion(FDFWI)framework for ultrasound computed tomography(USCT)imaging of biological tissues,which innovatively incorporates Sobolev space norm regularization for enhancement of prior information.Specifically,we investigate the effect of different types of hyperparameter on the imaging quality,during which the regularization weight is dynamically adapted based on the ratio of the regularization term to the data fidelity term.This strategy reduces reliance on predefined hyperparameters,ensuring robust inversion performance.The inversion results from both numerical and experimental tests(i.e.,numerical breast,thigh,and ex vivo pork-belly tissue)demonstrate the effectiveness of our regularized FWI strategy.These findings will contribute to the application of the FWI technique in quantitative imaging based on USCT and make USCT possible to be another high-resolution imaging method after x-ray computed tomography and magnetic resonance imaging. 展开更多
关键词 full waveform inversion Sobolev space norm regularization ultrasound computed tomography
原文传递
A time-domain multi-parameter elastic full waveform inversion with pseudo-Hessian preconditioning
11
作者 Huang Jian-ping Liu Zhang +5 位作者 Jin Ke-jie Ba Kai-lun Liu Yu-hang Kong Ling-hang Cui Chao li Chuang 《Applied Geophysics》 2025年第3期660-671,893,共13页
Based on waveform fitting,full waveform inversion(FWI)is an important inversion method with the ability to reconstruct multi-parameter models in high precision.However,the strong nonlinear equation used in FWI present... Based on waveform fitting,full waveform inversion(FWI)is an important inversion method with the ability to reconstruct multi-parameter models in high precision.However,the strong nonlinear equation used in FWI presents the following challenges,such as low convergence efficiency,high dependence on the initial model,and the energy imbalance in deep region of the inverted model.To solve these inherent problems,we develop a timedomain elastic FWI method based on gradient preconditioning with the following details:(1)the limited memory Broyden Fletcher Goldfarb Shanno method with faster convergence is adopted to im-prove the inversion stability;(2)a multi-scaled inversion strategy is used to alleviate the nonlinear inversion instead of falling into the local minimum;(3)in addition,the pseudo-Hessian preconditioned illumination operator is involved for preconditioning the parameter gradients to improve the illumination equilibrium degree of deep structures.Based on the programming implementation of the new method,a deep depression model with five diffractors is used for testing.Compared with the conventional elastic FWI method,the technique proposed by this study has better effectiveness and accuracy on the inversion effect and con-vergence,respectively. 展开更多
关键词 elastic full waveform inversion(EFWI) MULTI-PARAMETER PRECONDITIONING multiscale limited memory Broy den Fletcher Goldfarb Shanno(L-BFGS)
在线阅读 下载PDF
Sensitivity of MIMO STAP Radar with Waveform Diversity 被引量:1
12
作者 孙进平 王国华 刘德生 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第5期549-555,共7页
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multi- ple-input multiple-output (M1MO) radar is a new radar concept and has superiority over conv... Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multi- ple-input multiple-output (M1MO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incor- porating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are ex- pressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance. 展开更多
关键词 RADAR MIMO space-time adaptive processing waveform diversity sensitivity waveform covariance matrix
原文传递
INFLUENCE AND CORRECTION OF SIGNAL SOURCE DISTORTION TO EVALUATION OF EFFECTIVE BITS OF WAVEFORM RECORDERS
13
作者 梁志国 沈文 朱济杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1997年第2期198-202,共5页
In most effective bits evaluation of waveform recorders, the prerequisite is that there is no signal source distortion, or the distortion can be neglected. But when the distortion can be neglected or how it affects th... In most effective bits evaluation of waveform recorders, the prerequisite is that there is no signal source distortion, or the distortion can be neglected. But when the distortion can be neglected or how it affects the evaluation when it can't be neglected it is not determined yet. In this paper, the influence of signal source distortion to the evaluation of the effective bits of waveform recorders is discussed, then, the correction method of the effective bits error caused by the distortion influence is given. Finally , the error limit of the effective bits is given and how to selecte the calibrator is introduced. In the end , some simulation results of the new method in test are described. 展开更多
关键词 waveform generators data acquisition EVALUATION effective bits waveform measurement
在线阅读 下载PDF
Separation of Ions from Volatile Organic Compounds Using High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometer 被引量:2
14
作者 李华 王晓浩 +2 位作者 唐飞 杨吉 丁力 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第2期125-132,I0001,共9页
A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filte... A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized. 展开更多
关键词 High-field asymmetric waveform ion mobility spectrometry Mass spectrometer Ion-filter Ion-molecular reaction Proton transfer
在线阅读 下载PDF
Multi-scale seismic full waveform inversion in the frequency-domain with a multi-grid method 被引量:2
15
作者 宋建勇 郑晓东 +1 位作者 秦臻 苏本玉 《Applied Geophysics》 SCIE CSCD 2011年第4期303-310,371,共9页
Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based ... Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness. 展开更多
关键词 Full waveform inversion frequency domain wave equation multi-grid iterative method bi-conjugated gradient stable algorithm
在线阅读 下载PDF
Transmission cable fault detector based on waveform reconstruction 被引量:1
16
作者 吴剑锋 于忠洲 +2 位作者 李建清 王蕾 李小敏 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期48-51,共4页
In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable... In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive. 展开更多
关键词 cable fault test waveform reconstruction fault position location time-domain pulse reflection
在线阅读 下载PDF
Determination of focal depth by two waveform-based methods:A case study for the 2008 Panzhihua earthquake 被引量:19
17
作者 Zhenjie Wang Jiajun Chong +1 位作者 Sidao Ni Barbara Romanowicz 《Earthquake Science》 CSCD 2011年第4期321-328,共8页
With the 2008 Ms6.1 Panzhihua earthquake as a case study, we demonstrate that the focal depth of the main shock can be well constrained with two approaches: (1) using the depth phase sPL and (2) using full wavefo... With the 2008 Ms6.1 Panzhihua earthquake as a case study, we demonstrate that the focal depth of the main shock can be well constrained with two approaches: (1) using the depth phase sPL and (2) using full waveform inversion of local and teleseismic data. We also show that focal depths can be well constrained using the depth phase sPL with single broadband seismic station. Our study indicates that the main shock is located at a depth of ii kin, much shallower than those from other studies, confirming that the earthquake occurs in upper crust. Aftershocks are located in the depth range of 11 16 kin, which is consistent with a ruptured near vertical fault whose width is about 10 km, as expected for an Ms6.1 earthquake. 展开更多
关键词 Panzihua earthquake focal depth waveform inversion depth phase waveform comparison method
在线阅读 下载PDF
Effect of projectile head style on high gacceleration waveform of Hopkinson bar calibration system 被引量:3
18
作者 徐鹏 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第1期1-6,共6页
The freestyle Hopkinson bar is a kind of main high g loading equipment utilized widely in calibration of high g accelerometer and other high shock conditions. The calibration experiment of accelerometer was conducted.... The freestyle Hopkinson bar is a kind of main high g loading equipment utilized widely in calibration of high g accelerometer and other high shock conditions. The calibration experiment of accelerometer was conducted. With one-dimension stress wave theory, ANSYS/LS-DYNA software and experiment, the effect rules of the projectile's front-head style and the accelerometer's mounted base's length on acceleration waveform were analyzed. The results show that the acceleration duration inspired from Hopkinson bar is almost equal to the rising edge time of perfect half sine stress wave, and it is independent to the mounted base's length. Moreover, the projectile's fronthead style is a main affecting factor, and the projectiles with less Conical degrees will produce the lower amplitude and longer acceleration duration. 展开更多
关键词 Hopkinson bar high g acceleration stress wave waveform adjustment
在线阅读 下载PDF
Prismatic and full-waveform joint inversion 被引量:4
19
作者 Qu Ying-Ming Li Zhen-Chun +1 位作者 Huang Jian-Ping Li Jin-Li 《Applied Geophysics》 SCIE CSCD 2016年第3期511-518,580,共9页
Prismatic wave is that it has three of which is located at the reflection interface reflection paths and two reflection points, one and the other is located at the steep dip angle reflection layer, so that contains a ... Prismatic wave is that it has three of which is located at the reflection interface reflection paths and two reflection points, one and the other is located at the steep dip angle reflection layer, so that contains a lot of the high and steep reflection interface information that primary cannot reach. Prismatic wave field information can be separated by applying Born approximation to traditional reverse time migration profile, and then the prismatic wave is used to update velocity to improve the inversion efficiency for the salt dame flanks and some other high and steep structure. Under the guidance of this idea, a prismatic waveform inversion method is proposed (abbreviated as PWI). PWI has a significant drawback that an iteration time of PWI is more than twice as that of FWI, meanwhile, the full wave field information cannot all be used, for this problem, we propose a joint inversion method to combine prismatic waveform inversion with full waveform inversion. In this method, FWI and PWI are applied alternately to invert the velocity. Model tests suggest that the joint inversion method is less dependence on the high and steep structure information in the initial model and improve high inversion efficiency and accuracy for the model with steep dip angle structure. 展开更多
关键词 prismatic waveform inversion full waveform inversion high and steep structure sag model Marmousi2 model
在线阅读 下载PDF
A combined denoising method of empirical mode decomposition and singular spectrum analysis applied to Jason altimeter waveforms: A case of the Caspian Sea 被引量:2
20
作者 Wenguan Jiang Wei You 《Geodesy and Geodynamics》 CSCD 2022年第4期327-342,共16页
During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical m... During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical mode decomposition(EMD), and the combination of SSA and EMD to obtain the denoised waveforms. The advantages of the combined method were verified and the accuracy of the mean sea surface height(MSSH) model was improved. Comparing the denoising effect of the three methods, the results show that the signal-to-noise ratio(SNR), correlation coefficient and root-mean-square error are effectively improved by the combination of SSA and EMD. The sea surface heights(SSHs) were remeasured with a 50% threshold retracker of denoised waveforms, and the MSSH model of the Caspian Sea with a grid of 1’× 1’was established from the retracked SSHs of Jason-1/2/3. Taking the mean value of the four models as a control, it is found that the model calculated by the combined denoising method has the highest accuracy. This indicates that using the combined denoising method to reduce the noise level is beneficial to improve the accuracy of the MSSH model. 展开更多
关键词 Altimetry waveforms Jason-1/2/3 Combined method waveform retracking Mean sea surface height
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部