期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
DESIGN OF WAVE-SHAPED SPACE TRUSS CONSIDERING THE EFFECT OF SUBSTRUCTURE
1
作者 尹越 纪刚 +2 位作者 韩庆华 程万海 刘锡良 《Transactions of Tianjin University》 EI CAS 2001年第1期44-47,共4页
The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,consid... The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,considering the substructure made of reinforced concrete rigid frame and the space truss working together.Also,the anti-seismic characteristic of the wave-shaped space truss is studied based on the integral model. 展开更多
关键词 wave-shaped space truss effect of substructure anti-seismic design
全文增补中
Wave-shaped microfluidic chip assisted point-of-care testing for accurate and rapid diagnosis of infections 被引量:4
2
作者 Bin-Feng Yin Xin-Hua Wan +2 位作者 Ming-Zhu Yang Chang-Cheng Qian A.S.M.Muhtasim Fuad Sohan 《Military Medical Research》 SCIE CAS CSCD 2022年第5期553-564,共12页
Background:Early diagnosis and classification of infections increase the cure rate while decreasing complications,which is significant for severe infections,especially for war surgery.However,traditional methods rely ... Background:Early diagnosis and classification of infections increase the cure rate while decreasing complications,which is significant for severe infections,especially for war surgery.However,traditional methods rely on laborious operations and bulky devices.On the other hand,point-of-care(POC)methods suffer from limited robustness and accuracy.Therefore,it is of urgent demand to develop POC devices for rapid and accurate diagnosis of infections to fulfill on-site militarized requirements.Methods:We developed a wave-shaped microfluidic chip(WMC)assisted multiplexed detection platform(WMC-MDP).WMC-MDP reduces detection time and improves repeatability through premixing of the samples and reaction of the reagents.We further combined the detection platform with the streptavidin–biotin(SA-B)amplified system to enhance the sensitivity while using chemiluminescence(CL)intensity as signal readout.We realized simultaneous detection of C-reactive protein(CRP),procalcitonin(PCT),and interleukin-6(IL-6)on the detection platform and evaluated the sensitivity,linear range,selectivity,and repeatability.Finally,we finished detecting 15 samples from volunteers and compared the results with commercial ELISA kits.Results:Detection of CRP,PCT,and IL-6 exhibited good linear relationships between CL intensities and concentrations in the range of 1.25–40μg/ml,0.4–12.8 ng/ml,and 50–1600 pg/ml,respectively.The limit of detection of CRP,PCT,and IL-6 were 0.54μg/ml,0.11 ng/ml,and 16.25 pg/ml,respectively.WMC-MDP is capable of good adequate selectivity and repeatability.The whole detection procedure takes only 22 min that meets the requirements of a POC device.Results of 15 samples from volunteers were consistent with the results detected by commercial ELISA kits.Conclusions:WMC-MDP allows simultaneous,rapid,and sensitive detection of CRP,PCT,and IL-6 with satisfactory selectivity and repeatability,requiring minimal manipulation.However,WMC-MDP takes advantage of being a microfluidic device showing the coefficients of variation less than 10%enabling WMC-MDP to be a type of point-of-care testing(POCT).Therefore,WMC-MDP provides a promising alternative to POCT of multiple biomarkers.We believe the practical application of WMC-MDP in militarized fields will revolutionize infection diagnosis for soldiers. 展开更多
关键词 Point-of-care testing(POCT) Infection markers wave-shaped microfluidic chip CHEMILUMINESCENCE Multiplex detection
原文传递
Wave‑Shaped Piezoelectric Nanofber Membrane Nanogenerator for Acoustic Detection and Recognition 被引量:3
3
作者 Fan Xu Jiang Yang +6 位作者 Ruizhi Dong Hanxiao Jiang Conghuan Wang Weilin Liu Zaixiu Jiang Xiaoqing Zhang Guodong Zhu 《Advanced Fiber Materials》 SCIE CAS 2021年第6期368-380,共13页
With the rapid development of internet of things and wearable electronics,how to conveniently power uncountable sensors remains a huge challenge.Energy harvesting strategy is suggested to collect and convert environme... With the rapid development of internet of things and wearable electronics,how to conveniently power uncountable sensors remains a huge challenge.Energy harvesting strategy is suggested to collect and convert environmental energies into electrical energy.Thereinto,piezoelectric polymers are utilized as fexible harvesters to convert mechanical energy.The latter widely distributes in both our daily life and industrial environment.Intrinsic piezoelectric property further drives piezoelectric polymers to construct fexible self-powered strain sensors.However,relatively low piezoelectric performance restricts their application in detection and conversion of weak mechanical excitations.Herein,wave-shaped 3D piezoelectric device was fabricated by embossing electrospun polyvinylidene fuoride nanofbers.This 3D structured device presents better longitudinal and transverse piezoelectric performance than usual fat-type one.This wave-shaped piezoelectric device was developed for acoustic detection and recognition with a frequency resolution better than 0.1 Hz.This wave-shaped device was capable of frequency spectrum analyses of various sound sources from human and animals and well presents its potential for future wearable acoustic sensors and transducers. 展开更多
关键词 Piezoelectric polymer PVDF wave-shaped device Acoustic detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部