期刊文献+
共找到104,758篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental and Numerical Study on Local Scour of Pile Group Foundations for Offshore Wind Turbines Under Wave-Current Interactions
1
作者 YU Heng ZHANG Yu-hang +1 位作者 JIA Jia-yu ZHANG Jin-feng 《China Ocean Engineering》 2025年第3期493-503,共11页
Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experi... Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experiments under unidirectional flow, bidirectional flow, and wave-current interactions with different flow directions around the pile group foundation were first conducted to investigate the development of scour around the pile group foundation.Additionally, a three-dimensional scour numerical model was established via the open-source software REEF3D to simulate the flow field and scour around the prototype-scale foundation. The impact of flow on scour was discussed.Under unidirectional flow, scour equilibrium was reached more quickly, with the maximum scour depth reaching approximately 1.2 times the pile diameter and the extent of the scour hole spanning about 4.9 times the pile diameter.Compared with those under unidirectional flow, the scour depths under combinations of currents and waves, as well as bidirectional flow, were slightly smaller. However, the morphology of scour holes was more uniform and symmetrical. The numerical simulation results show good agreement with the experimental data, demonstrating the impact of varying flow directions on the velocity distribution around the foundation, the morphology of scour holes, and the location of the maximum scour depth. 展开更多
关键词 offshore wind turbines pile group foundation local scour wave-current interaction numerical simulation
在线阅读 下载PDF
Wave-current interaction during Typhoon Nuri(2008)and Hagupit(2008):an application of the coupled ocean-wave modeling system in the northern South China Sea 被引量:5
2
作者 ZHANG Chen HOU Yijun LI Jian 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第3期663-675,共13页
The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the infl... The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the influence of wave-current interactions on storm surge, we used a coupled ocean-atmospherewave-sediment transport(COAWST) modeling system with radiation-stress and vortex-force formulations to simulate two typically intense tropical storms that invaded the SCS, namely Typhoons Nuri(2008) and Hagupit(2008), and compared results with observations from the Hong Kong Observatory. Both radiationstress and vortex-force formulations significantly improved the accuracy of the simulation. Depending on which typhoon and the topography encountered, the influence of surface waves on the oceanic circulation showed different characteristics, including the differences of range and intensity of storm surge between vortex-force and radiation-stress experiments. During typhoon landing, strong sea-surface elevation in concert with wave set-up/set-down caused the adjustment of the momentum balance. In the direction perpendicular to the current, but especially in the cross-shore direction, the pressure gradient and wave effects on the current dominated the momentum balance. 展开更多
关键词 northern South China Sea wave-current interactions storm surge coupled ocean-atmosphere-wave-sediment transport(COAWST) modeling system
在线阅读 下载PDF
Effects of wave-current interaction on the waves, cold-water mass and transport of diluted water in the Beibu Gulf 被引量:3
3
作者 Jingling Yang Shaocai Jiang +3 位作者 Junshan Wu Lingling Xie Shuwen Zhang Peng Bai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第1期25-40,共16页
Wave-current interaction and its effects on the hydrodynamic environment in the Beibu Gulf(BG) have been investigated via employing the Coupled Ocean–Atmosphere–Wave–Sediment Transport(COAWST) modeling system. The ... Wave-current interaction and its effects on the hydrodynamic environment in the Beibu Gulf(BG) have been investigated via employing the Coupled Ocean–Atmosphere–Wave–Sediment Transport(COAWST) modeling system. The model could simulate reasonable hydrodynamics in the BG when validated by various observations.Vigorous tidal currents refract the waves efficiently and make the seas off the west coast of Hainan Island be the hot spot where currents modulate the significant wave height dramatically. During summer, wave-enhanced bottom stress could weaken the near-shore component of the gulf-scale cyclonic-circulation in the BG remarkably, inducing two major corresponding adjustments: Model results reveal that the deep-layer cold water from the southern BG makes critical contribution to maintaining the cold-water mass in the northern BG Basin.However, the weakened background circulation leads to less cold water transported from the southern gulf to the northern gulf, which finally triggers a 0.2℃ warming in the cold-water mass area;In the top areas of the BG, the suppressed background circulation reduces the transport of the diluted water to the central gulf. Therefore, more freshwater could be trapped locally, which then triggers lower sea surface salinity(SSS) in the near-field and higher SSS in the far-field. 展开更多
关键词 wave-current interaction Beibu Gulf river plume cold-water mass COAWST
在线阅读 下载PDF
Typhoon-induced wind waves in the northern East China Sea during two typhoon events:the impact of wind field and wave-current interaction 被引量:2
4
作者 Zhao LI Shuiqing LI +3 位作者 Yijun HOU Dongxue MO Jian LI Baoshu YIN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第3期934-949,共16页
We examined the influences of the wind fi eld and wave-current interaction(WCI)on the numerical simulation results of typhoon-induced wind waves in the northern East China Sea(NECS)using the coupled Simulating Waves N... We examined the influences of the wind fi eld and wave-current interaction(WCI)on the numerical simulation results of typhoon-induced wind waves in the northern East China Sea(NECS)using the coupled Simulating Waves Nearshore+Advanced Circulation(SWAN+ADCIRC)model.The simulations were performed during two typhoon events(Lekima and Muifa),and two widely used reanalysis wind fields,the Climate Forecast System Version 2(CFSv2)from the National Centers for Environmental Prediction(NCEP)and the fifth-generation European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis(ERA5),were compared.The results indicate that the ERA5 and CFSv2 wind fields both reliably reproduced the wind variations measured by in-situ buoys,and the accuracy of the winds from ERA5 were generally better than those from CFSv2 because CFSv2 tended to overestimate the wind speed and the simulated significant wave height(SWH),particularly the peak SWH.The WCI effects between the two wind field simulations were similar;these effects enhanced the SWH throughout the nearshore NECS during both typhoons but suppressed the SWH on the right side of the Typhoon Muifa track in the deep and off shore sea areas.In summary,variations in the water depth and current propagation direction dominate the modulation of wave height. 展开更多
关键词 wind field typhoon track significant wave height wave-current interaction the northern East China Sea
在线阅读 下载PDF
Time-Domain Nonlinear Wave-Current Interaction with A Steep Wave Riser Considering Internal Flow Effect 被引量:1
5
作者 TANG Lian-yang CHENG Yong JI Chun-yan 《China Ocean Engineering》 SCIE EI CSCD 2021年第3期410-421,共12页
The nonlinear dynamic response induced by the wave-current interaction on a deepwater steep wave riser(SWR)is numerically investigated based on a three-dimensional(3 D)time-domain finite element method(FEM).The govern... The nonlinear dynamic response induced by the wave-current interaction on a deepwater steep wave riser(SWR)is numerically investigated based on a three-dimensional(3 D)time-domain finite element method(FEM).The governing equation considering internal flow is established in the global coordinate system.The whole SWR consists of three segments:the decline segment,buoyancy segment and hang-off segment,in which the buoyancy segment is wrapped by several buoyancy modules in the middle section,leading to the arch bend and sag bend.A Newmark-β iterative scheme is adopted for the accurate analysis to solve the governing equation and update the dynamic response at each time step.The proposed method is verified through the published results for the dynamic response of steel catenary riser(SCR)and static configuration of steel lazy wave riser(SLWR).Simulations are executed to study the influence of wave height,current velocity/direction,internal flow density/velocity and top-end pressure on the tension,configuration and bending moment of the SWR.The results indicate that the influence of the current on the configuration and mechanical behavior of the SWR is greater than that of the wave,especially in the middle section.With increasing current velocity,the suspending height of the middle section drops,meanwhile,its bending moment decreases accordingly,but the tension increases significantly.For a fixed external load,the increasing internal flow density induces the amplification of the tension at the hang-off segment and the mitigation at the decline segment,while the opposite trend occurs at the bending moment. 展开更多
关键词 steep wave riser(SWR) nonlinear dynamic response wave-current interaction time-domain finite element method(FEM)
在线阅读 下载PDF
Research on Measurement of Bed Shear Stress Under Wave-Current Interaction 被引量:6
6
作者 徐华 夏云峰 +3 位作者 马炳和 郝思禹 张世钊 杜德军 《China Ocean Engineering》 SCIE EI CSCD 2015年第4期589-598,共10页
The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to researc... The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave-current effect, and confirm that the method of measuring bed shear stress under wave-current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave-current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided. 展开更多
关键词 bed shear stress micro-nanotechnology thermal shearometer wave-current effect sediment movement
在线阅读 下载PDF
Wave-current interaction with a vertical square cylinder at different Reynolds numbers 被引量:8
7
作者 Azhen Kang Bing Zhu 《Journal of Modern Transportation》 2013年第1期47-57,共11页
Large eddy simulation is performed to study three-dimensional wave-current interaction with a square cylinder at different Reynolds numbers, ranging from 1,000 to 600,000. The Keulegan-Carpenter number is relevantly a... Large eddy simulation is performed to study three-dimensional wave-current interaction with a square cylinder at different Reynolds numbers, ranging from 1,000 to 600,000. The Keulegan-Carpenter number is relevantly a constant of 0.6 for all cases. The Strouhal number, the mean and the RMS values of the effective drag coefficient in the streamwise and transverse directions are computed for various Reynolds numbers, and the velocity of a rep- resentative point in the turbulent zone is simulated to find the turbulent feature. It is found that the wave-current interaction should be considered as three-dimensional flow when the Reynolds number is high; under wave-current effect, there exists a critical Reynolds number, and when the Reynolds number is smaller than the critical one, current effect on wave can be nearly neglected; conversely, with the Reynolds number increasing, wave-currentstructure interaction is sensitive to the Reynolds number. 展开更多
关键词 Large eddy simulation (LES) Wave- current-structure interaction Drag coefficient Vortex shedding Reynolds number
在线阅读 下载PDF
Load of the Small-Scale Vertical Cylinder in a Wave-Current Field
8
作者 Mingjie Li Binbin Zhao Wengyang Duan 《哈尔滨工程大学学报(英文版)》 2026年第1期82-94,共13页
Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in ... Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current. 展开更多
关键词 wave-current interaction Cylinder load HLGN model Morison equation Regular waves
在线阅读 下载PDF
BOTTOM SHEAR STRESS UNDER WAVE-CURRENT INTERACTION 被引量:14
9
作者 LIANG Bing-chen LI Hua-jun LEE Dong-yong 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第1期88-95,共8页
The present work adopts the COHERENS-SWAN model developed by the first author through coupling three-dimensional hydrodynamic model (COHERENS) and third-generation wave model (SWAN). Inside the COHERENS-SWAN, the ... The present work adopts the COHERENS-SWAN model developed by the first author through coupling three-dimensional hydrodynamic model (COHERENS) and third-generation wave model (SWAN). Inside the COHERENS-SWAN, the SWAN is regarded as a subroutine and the time- and space-varying current velocity and surface elevation are obtained from the COHERENS. Wave-enhanced bottom shear stress, wave induced surface mixing length and wave dependent surface drag coefficient have been introduced into the COHERENS. Secondly, as wave-enhanced bottom shear stress ("bottom shear stress" described as BSS sometimes in this article) is concerned, a modified bottom shear stress Grant and Madsen model which introduces random wave field is given and introduced to COHERENS-SWAN. COHERENS-SWAN is also adopted to simulate three-dimensional flow in the Yellow River Delta with wave-current co-existing. Four numerical experiments were given to study the effects of wave-current interaction on enhancing bottom shear stress. The simulated current velocities, wave height and wave period match well with field measurement data. The simulated significant wave height and wave period for the case with considering the effects of current can give better agreement with measurement data than the case without involving the effects of current. The introduction of random wave generates lower the bottom shear stress than the case without introducing it. There are obvious differences between bottom shear stress of two way interaction and one way interaction. Velocity field obtained by the COHERENS-SWAN is reasonable according to previous studies and measurements. 展开更多
关键词 Yellow River Delta COHERENS SWAN wave-current interaction bottom shear stress
原文传递
WAVE-CURRENT INTERACTIONS WITH THREE-DIMENSIONAL FLOATING BODIES 被引量:15
10
作者 LIU Zhen TENG Bin +1 位作者 NING De-zhi GOU Ying 《Journal of Hydrodynamics》 SCIE EI CSCD 2010年第2期229-240,共12页
A Time-domain Higher-Order Boundary Element Method(THOBEM) is developed for simulating wave-current interactions with 3-D floating bodies.Through a Taylor series expansion and a perturbation procedure,the model is f... A Time-domain Higher-Order Boundary Element Method(THOBEM) is developed for simulating wave-current interactions with 3-D floating bodies.Through a Taylor series expansion and a perturbation procedure,the model is formulated to the first-order in the wave steepness and in the current velocity,respectively.The boundary value problem is decomposed into a steady double-body flow problem and an unsteady wave problem.Higher-order boundary integral equation methods are then used to solve the proposed problems with a fourth-order Runge-Kutta method for the time marching.An artificial damping layer is adopted to dissipate the scattering waves.Different from the other time-domain numerical models,which are often focused on the wave-current interaction with restrained bodies,the present model deals with a floating hemisphere.The numerical results of wave forces,wave run-up and body response are all in a close agreement with those obtained by frequency-domain methods.The proposed numerical model is further applied to investigate wave-current interactions with a floating body of complicated geometry.In this work,the regular and focused wave combined with current interacting with a truss-spar platform is investigated. 展开更多
关键词 wave-current interaction floating bodies time-domain simulation Time-domain Higher-Order Boundary Element Method(THOBEM)
原文传递
Numerical simulation of wave-current interaction using the SPH method 被引量:5
11
作者 Ming He Xi-feng Gao Wan-hai Xu 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第3期535-538,共4页
In this paper, the smoothed particle hydrodynamics(SPH) method is used to build a numerical wave-current tank(NWCT). The wave is generated by using a piston-type wave generator and is absorbed by using a sponge la... In this paper, the smoothed particle hydrodynamics(SPH) method is used to build a numerical wave-current tank(NWCT). The wave is generated by using a piston-type wave generator and is absorbed by using a sponge layer. The uniform current field is generated by simultaneously imposing the directional velocity and hydrostatic pressure in both inflow and outflow regions set below the NWCT. Particle cyclic boundaries are also implemented for recycling the Lagrangian fluid particles. Furthermore, to shorten the time to reach a steady state, a temporary rigid-lid treatment for the water surface is proposed. It turns out to be very effective for weakening the undesired oscillatory flow at the beginning stage of the current generation. The calculated water surface elevation and horizontal-velocity profile are validated against the available experimental data. Satisfactory agreements are obtained, demonstrating the good capability of the NWCT. 展开更多
关键词 wave-current interaction numerical wave-current tank rigid-lid treatment smoothed particle hydrodynamics(SPH)
原文传递
Case study on wave-current interaction and its effects on ship navigation 被引量:2
12
作者 Chen Chen 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第3期411-419,共9页
The East China Sea, where both the strong Kuroshio Current and powerful low pressures exist, is an inevitable ocean area for various ships sailing between Japan and other Asian and European countries. The safety and e... The East China Sea, where both the strong Kuroshio Current and powerful low pressures exist, is an inevitable ocean area for various ships sailing between Japan and other Asian and European countries. The safety and economics of such shipping behaviors are often affected by the strong dynamics of the environmental matrix. The wave conditions are usually significant under high ocean winds, leading to interaction between waves and currents. In this study, the third generation wave model SWAN are used to study the wave propagation and wave-current interaction, following by its effects on the ship navigation discussed. Significant interaction between the strong Kuroshio Current and high ocean waves as well as its effects on ship safety have been found by calculations of certain wave parameters, such as significant wave height(SWH), average wave period(AWP), mean wave direction(MWD), wave length(WLEN), frequency and directional spreading. 展开更多
关键词 wave-current interaction East China Sea ship navigation
原文传递
A Reconfigurable Omnidirectional Triboelectric Whisker Sensor Array for Versatile Human–Machine–Environment Interaction
13
作者 Weichen Wang Jiaqi Zhu +9 位作者 Hongfa Zhao Fei Yao Yuzhu Zhang Xiankuan Qian Mingrui Shu Zhigang Wu Minyi Xu Hongya Geng Wenbo Ding Juntian Qu 《Nano-Micro Letters》 2026年第3期121-140,共20页
Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations... Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments. 展开更多
关键词 Reconfigurable sensor array interaction interface Tactile perception Omnidirectional sensor Reversible anchoring
在线阅读 下载PDF
Pressure-Modulated Host–vip Interactions Boost Effective Blue-Light Emission of MIL-140A Nanocrystals
14
作者 Ting Zhang Jiaju Liang +7 位作者 Ruidong Qiao Binhao Yang Kaiyan Yuan Yixuan Wang Chuang Liu Zhaodong Liu Xinyi Yang Bo Zou 《Nano-Micro Letters》 2026年第2期845-856,共12页
Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other field... Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties. 展开更多
关键词 Metal–organic framework nanocrystals Blue-light emission Host–vip interactions Pressure treatment
在线阅读 下载PDF
Effect of Magnetic Hysteresis on Magnon-Magnon Coupling Induced by Interlayer Dzyaloshinskii-Moriya Interaction
15
作者 Jihao Xia Yuqiang Wang +8 位作者 Guibin Lan Jiyang Ou Weizhou Wu Jiafeng Feng Caihua Wan Guanxiang Du Syed Rizwan Xiufeng Han Guoqiang Yu 《Chinese Physics Letters》 2026年第1期231-247,共17页
Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling ... Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems. 展开更多
关键词 universal approach magnon magnon coupling symbolic computationeliminating magnetic hysteresis bilayer coupled systems egantiferromagnets energy expressionenabling derivation analytical expressions interlayer Dzyaloshinskii Moriya interaction
原文传递
Occurrence of beryllium and its microscale interactions with coexisting phases in beryllium-containing sludge
16
作者 Xiaobo Min Lin Yu +6 位作者 Yong Ke Yunyan Wang Wenming Zeng Hui Xu Yun Li Cong Peng Zhumei Sun 《Journal of Environmental Sciences》 2026年第1期383-390,共8页
Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the o... Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the occurrence of Be in BCS is unclear,which seriously hinders the development of pollution control technologies.In order to enhance the understanding of BCS,the occurrence of Be and the microscale interactions with coexisting phases were investigated for the first time.It was found that CaSO_(4)·2H_(2)O and amorphous SiO_(2) are the primary phases of BCS.The simulated experiments of purified materials showed that Be interacted with CaSO_(4)·2H_(2)O and amorphous SiO_(2).Be can enter into the lattice of CaSO_(4)·2H_(2)O mainly as free Be2+.Amorphous SiO_(2) can adsorb Be2+particularly at a pH range of 3–5.The dissolution behavior experiment of BCS shows that about 52%of the Be is readily extracted under acidic conditions,which refers to the Be of independent occurrence.In contrast,the remaining 48%of Be can be extracted only after the CaSO_(4)·2H_(2)O has completely dissolved.Hence,CaSO_(4)·2H_(2)O is identified as the key occurrence phase which determines the highly efficient dissolution of Be.As a result,this study enhances the understanding of BCS and lays the foundation for the development of Be separation technologies. 展开更多
关键词 Beryllium-containing sludge(BCS) Occurrence phase CaSO_(4)·2H_(2)O Amorphous SiO_(2) Microscale interactions
原文传递
EFFECTS OF WAVE-CURRENT INTERACTIONS ON BOTTOM STRESS AND CURRENTS 被引量:7
17
作者 YinBao-shu YangDe-zhou +3 位作者 LinXiang HouYi-jun ChengMing-hua WillPerrie 《Journal of Hydrodynamics》 SCIE EI CSCD 2003年第5期13-19,共7页
This paper presents a high-resolution (2′X2′) numerical model of coastalcoupled wave-current interaction with explicit consideration of the effects of wave-currentinteraction on bottom stress. For two selected storm... This paper presents a high-resolution (2′X2′) numerical model of coastalcoupled wave-current interaction with explicit consideration of the effects of wave-currentinteraction on bottom stress. For two selected storms with measured data in the Yellow River coastalarea of the Bohai Sea, it is shown that the bottom stress calculated by using a coupledwave-current model is increased, as one would expect, compared with the bottom stress computed withan uncoupled current model. Moreover, the current velocity field is also changed, but thecorresponding current directions show less influence in the two simulations. The extents of changesin bottom stress and current velocity vary with storm intensities. The results further imply thatthe coupled wave-current model should be used as the basis for simulating the current velocity andsea level in the near shore region. 展开更多
关键词 coupled wave-current model bottom stress coastal area
原文传递
Effect of nonlinear wave-current interaction on flow fields and hydrodynamic forces 被引量:1
18
作者 王涛 李家春 《Science China Mathematics》 SCIE 1997年第6期622-632,共11页
A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the l... A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does so by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best. 展开更多
关键词 STOKES WAVE EXPONENTIAL CURRENT NONLINEAR interaction.
原文传递
Generalized Mean-Flow Theory of Wave-Current-BottomInteractions 被引量:1
19
作者 黄虎 《China Ocean Engineering》 SCIE EI 2006年第1期165-172,共8页
The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be ... The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be extended and applicated to the study of the mechanism. Considering the effects of moving bottoms and starting from the Navier-Stokes equation of motion of a vinous fluid including the Coriolis force, a generalized mean-flow medel theory for the nearshore region, that is, a set of mean-flow equations and their generalized wave action equation involving the three new kinds of actions termed respectively as the current wave action, the bottom wave action and the dissipative wave action which can be applied to arbitrary depth over moving bottoms and ambient currents with a typical vertical structure, is developed by vertical integration and time-averaglng over a wave peried, thus extending the classical concept, wave action, from the ideal averaged flow conservative system to the real averaged flow dissipative dynamical system, and having a large range of application. 展开更多
关键词 mean-flow equations wave action large-scale slowly varying currents wave-current-bottom interactions dissipative dynamical system
在线阅读 下载PDF
THE INTERACTIONS BETWEEN WAVE-CURRENTS AND OFFSHORE STRUCTURES WITH CONSIDERATION OF FLUID VISCOSITY 被引量:1
20
作者 万德成 刘应中 缪国平 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第4期307-322,共16页
Study of the how held around the large scale offshore structures under the action of waves and viscous currents is of primary importance for the scouring estimation and protection in the vicinity of the structures. Bu... Study of the how held around the large scale offshore structures under the action of waves and viscous currents is of primary importance for the scouring estimation and protection in the vicinity of the structures. But very little has been known in its mechanism when the viscous effects is taken into consideration. As a part of the efforts to tackle the problem, a numerical model is presented for the simulation of the how held around a fixed vertical truncated circular cylinder subjected to waves and viscous currents based on the depth-averaged Reynolds equations and depth-averaged k-epsilon turbulence model. Finite difference method with a suitable iteration defect correct method and an artificial open boundary condition are adopted in the numerical process. Numerical results presented relate to the interactions of a pure incident viscous current with Reynolds number Re = 10(5), a pure incident regular sinusoidal wave, and the coexisting of viscous current and wave with a circular cylinder, respectively. Flow fields associated with the hydrodynamic coefficients of the fixed cylinder, as well as corresponding free surface profiles and wave amplitudes, are discussed. The present method is found to be relatively straightforward, computationally effective and numerically stable for treating the problem of interactions among waves, viscous currents and bodies. 展开更多
关键词 interactions among waves viscous currents and bodies depth-averaged Reynolds equations depth-averaged kappa epsilon turbulence model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部