期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Wave-ViT的改进多通道深度残差网络的电能质量扰动分类
1
作者 刘大鹏 罗嘉宾 +3 位作者 刘勇 穆勇 董彪 张淑清 《计量学报》 北大核心 2025年第5期629-637,共9页
提出一种基于小波变换视觉自注意力(Wave-ViT)模型的改进多通道深度残差网络的电能质量扰动分类方法。首先将一维时间序列电能质量扰动(PQDs)信号作为通道一的输入;再将一维PQDs信号通过格拉姆角场(GAF)映射成为二维图像作为通道二的输... 提出一种基于小波变换视觉自注意力(Wave-ViT)模型的改进多通道深度残差网络的电能质量扰动分类方法。首先将一维时间序列电能质量扰动(PQDs)信号作为通道一的输入;再将一维PQDs信号通过格拉姆角场(GAF)映射成为二维图像作为通道二的输入;利用Wave-ViT模块深层挖掘二维GAF图像信息,并作为通道三的输入。接着分别对3个通道进行深层次的特征提取,构造适用于PQDs分类的多通道网络框架。通过消融实验,证实多通道对网络收敛速度和分类精度有互补作用。进一步的噪声实验和对比试验表明该方法特征提取能力强,所需迭代次数少,且抗噪性能好,对16种扰动在随机噪声和无噪声环境下的识别率分别能达到99.81%和99.19%,为电能质量扰动识别提供了一种新的思路。 展开更多
关键词 电磁计量 电能质量扰动 wave-vit 深度残差网络 消融实验 噪声实验 扰动识别
在线阅读 下载PDF
融合注意力机制的毫米波雷达人体动作识别方法 被引量:1
2
作者 蒋留兵 裴航舰 车俐 《空天预警研究学报》 CSCD 2023年第5期349-354,共6页
为解决少样本场景下毫米波雷达人体动作识别过程中卷积神经网络(CNN)易出现过拟合、训练效果不理想等问题,提出一种融入时序注意力机制的CNN和视觉转换器模型结合的方法.该方法首先对收到的雷达回波信息做预处理,再通过短时傅里叶变换(S... 为解决少样本场景下毫米波雷达人体动作识别过程中卷积神经网络(CNN)易出现过拟合、训练效果不理想等问题,提出一种融入时序注意力机制的CNN和视觉转换器模型结合的方法.该方法首先对收到的雷达回波信息做预处理,再通过短时傅里叶变换(STFT)进行时频分析得到时频图,最终将带有特征信息的图像送入融合的网络模型中进行分类识别.实验结果表明,与其他4种模型的方法相比,本文提出的方法识别准确率最高,识别效果可达到91.57%.该方法能有效地增强网络对于时间维度建模,增加了网络收敛速度,达到了提升识别准确率的效果. 展开更多
关键词 毫米波雷达 卷积神经网络 视觉转换器 注意力机制 动作识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部