In this paper, the heat, resolvent and wave kernels associated to the Schr?dinger operator with multi-inverse square potential on the Euclidian space Rn are given in explicit forms.
The nonlinear viscoelastic wave equation |μt|^pμtt-△μ-μutt+∫^t0g(t-s)△μ(s)ds+|μ|^pU=0,in a bounded domain with initial conditions and Dirichlet boundary conditions is consid- ered. We prove that, fo...The nonlinear viscoelastic wave equation |μt|^pμtt-△μ-μutt+∫^t0g(t-s)△μ(s)ds+|μ|^pU=0,in a bounded domain with initial conditions and Dirichlet boundary conditions is consid- ered. We prove that, for a class of kernels 9 which is singular at zero, the exponential decay rate of the solution energy. The result is obtained by introducing an appropriate Lyapounov functional and using energy method similar to the work of Tatar in 2009. This work improves earlier results.展开更多
When ordinary Smoothed Particle Hydrodynamics (SPH) method is used to simulate wave propagation in a wave tank, it is usually observed that the wave height decays and the wave length elongates along the direction of...When ordinary Smoothed Particle Hydrodynamics (SPH) method is used to simulate wave propagation in a wave tank, it is usually observed that the wave height decays and the wave length elongates along the direction of wave propagation. Accompanied with this phenomenon, the pressure under water decays either and shows a big oscillation simultaneously. The reason is the natural potential tensile instability of modeling water motion with ordinary SPH which is caused by particle negative stress in the computation. I'o deal with the problems, a new sextic kernel function is proposed to reduce this instability. An appropriate smooth length is given and its computation criterion is also suggested. At the same time, a new kind dynamic boundary condition is introduced. Based on these improvements, the new SPH method named stability improved SPH (SISPH) can simulate the wave propagation well. Both the water surface and pressure can be well expressed and the oscillation of pressure is nearly eliminated. Compared with other improved methods, SISPH can truly reveal the physical reality without bringing some new problems in a simple way.展开更多
In this study, the null-field boundary integral equation method (BIEM) and the image method are used to solve the SH wave scattering problem containing semi-circular canyons and circular tunnels. To fully utilize th...In this study, the null-field boundary integral equation method (BIEM) and the image method are used to solve the SH wave scattering problem containing semi-circular canyons and circular tunnels. To fully utilize the analytical property of Circular geometry, the polar coordinates are used to expand the closed-form fundamental solution to the degenerate kernel, and the Fourier series is also introduced to represent the boundary density. By collocating boundary points to match boundary condition on the boundary, a linear algebraic system is constructed. The unknown coefficients in the algebraic system can be easily determined. In this way, a semi-analytical approach is developed. Following the experience of near-trapped modes in water wave problems of the full plane, the focusing phenomenon and near-trapped modes for the SH wave problem of the half-plane are solved, since the two problems obey the same mathematical model. In this study, it is found that the SH wave problem containing two semi-circular canyons and a circular tunnel has the near-trapped mode and the focusing phenomenon for a special incident angle and wavenumber. In this situation, the amplification factor for the amplitude of displacement is over 300.展开更多
The main features are the length of the waveguide in one direction, as well as limitations and localization of the wave beam in other areas. There is described the technique of the solution of tasks on distribution of...The main features are the length of the waveguide in one direction, as well as limitations and localization of the wave beam in other areas. There is described the technique of the solution of tasks on distribution of waves in an infinite cylindrical waveguide with a radial crack. Also numerical results are given in the article. Viscous properties of the material are taken into account by means of an integral operator Voltaire. Research is conducted in the framework of the spatial theory of visco elastic. The technique is based on the separation of spatial variables and formulates the boundary eigenvalue problem that can be solved by the method of orthogonal sweep Godunov. In the given paper we obtain numeric values of the phase velocity depending on of wave numbers. The obtained numerical results are compared with the known data. This work is continuation of article [1]. Statement of the problem and methodology of partial solutions are described in [1]. In this work, we present a complete statement of the problem, methods of solution and discuss the numerical results.展开更多
文摘In this paper, the heat, resolvent and wave kernels associated to the Schr?dinger operator with multi-inverse square potential on the Euclidian space Rn are given in explicit forms.
文摘The nonlinear viscoelastic wave equation |μt|^pμtt-△μ-μutt+∫^t0g(t-s)△μ(s)ds+|μ|^pU=0,in a bounded domain with initial conditions and Dirichlet boundary conditions is consid- ered. We prove that, for a class of kernels 9 which is singular at zero, the exponential decay rate of the solution energy. The result is obtained by introducing an appropriate Lyapounov functional and using energy method similar to the work of Tatar in 2009. This work improves earlier results.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579038 and 51490672)the National Basic Research Program of China(Grant No.2013CB036101)
文摘When ordinary Smoothed Particle Hydrodynamics (SPH) method is used to simulate wave propagation in a wave tank, it is usually observed that the wave height decays and the wave length elongates along the direction of wave propagation. Accompanied with this phenomenon, the pressure under water decays either and shows a big oscillation simultaneously. The reason is the natural potential tensile instability of modeling water motion with ordinary SPH which is caused by particle negative stress in the computation. I'o deal with the problems, a new sextic kernel function is proposed to reduce this instability. An appropriate smooth length is given and its computation criterion is also suggested. At the same time, a new kind dynamic boundary condition is introduced. Based on these improvements, the new SPH method named stability improved SPH (SISPH) can simulate the wave propagation well. Both the water surface and pressure can be well expressed and the oscillation of pressure is nearly eliminated. Compared with other improved methods, SISPH can truly reveal the physical reality without bringing some new problems in a simple way.
基金Ministry of Science and Technology under Grant No.MOST 103-2815-C-019-003-E to the undergraduate studentthe NSC under Grant No.100-2221-E-019-040-MY3
文摘In this study, the null-field boundary integral equation method (BIEM) and the image method are used to solve the SH wave scattering problem containing semi-circular canyons and circular tunnels. To fully utilize the analytical property of Circular geometry, the polar coordinates are used to expand the closed-form fundamental solution to the degenerate kernel, and the Fourier series is also introduced to represent the boundary density. By collocating boundary points to match boundary condition on the boundary, a linear algebraic system is constructed. The unknown coefficients in the algebraic system can be easily determined. In this way, a semi-analytical approach is developed. Following the experience of near-trapped modes in water wave problems of the full plane, the focusing phenomenon and near-trapped modes for the SH wave problem of the half-plane are solved, since the two problems obey the same mathematical model. In this study, it is found that the SH wave problem containing two semi-circular canyons and a circular tunnel has the near-trapped mode and the focusing phenomenon for a special incident angle and wavenumber. In this situation, the amplification factor for the amplitude of displacement is over 300.
文摘The main features are the length of the waveguide in one direction, as well as limitations and localization of the wave beam in other areas. There is described the technique of the solution of tasks on distribution of waves in an infinite cylindrical waveguide with a radial crack. Also numerical results are given in the article. Viscous properties of the material are taken into account by means of an integral operator Voltaire. Research is conducted in the framework of the spatial theory of visco elastic. The technique is based on the separation of spatial variables and formulates the boundary eigenvalue problem that can be solved by the method of orthogonal sweep Godunov. In the given paper we obtain numeric values of the phase velocity depending on of wave numbers. The obtained numerical results are compared with the known data. This work is continuation of article [1]. Statement of the problem and methodology of partial solutions are described in [1]. In this work, we present a complete statement of the problem, methods of solution and discuss the numerical results.