The waterproof performance,mechanical properties,chemical composition,microstructure,and pore structure of hydrophobically-modified geopolymer concrete are investigated before and after dry-wet cycles,to determine the...The waterproof performance,mechanical properties,chemical composition,microstructure,and pore structure of hydrophobically-modified geopolymer concrete are investigated before and after dry-wet cycles,to determine the long-term feasibility of using hydrophobically-modified geopolymer concrete in wet environments.We use two types of organic modifying agents:polydimethylsiloxane(PDMS)and sodium methyl siliconate(SMS).The experimental results show that incorporating 2%–6%PDMS or 5%–15%SMS can make the concrete hydrophobic,with water absorption and chloride transport rates decreasing by up to 94.3%.We also analyze the bonding modes of organic molecules and geopolymer gels,as well as their evolution mechanisms during dry-wet cycles.PDMS-modified geopolymer concrete is found to exhibit long-term waterproof performance that is not weakened by dry-wet cycles.This is attributed to the robust combination of organic components and the geopolymer gel skeleton formed through phase cross-linking.Meanwhile,PDMS-modified geopolymer concrete’s hydrophobicity,strength,and microstructure are essentially unaffected.In contrast,SMS-modified geopolymer concrete shows higher water sensitivity,although it does maintain efficient waterproof performance.Due to relatively low binding energy,the dry-wet cycles may lead to the detachment of some SMS molecules from the gel network,which results in a decrease of 18.6%in compressive strength and an increase of 37.6%in total porosity.This work confirms the utility of hydrophobically-modified geopolymer concrete as a building material for long-term service in wet environments,for instance,areas with frequent precipitation,or splash and tidal zones.展开更多
When subjected to external loads from the ground and nearby construction,tunnel segmental lining joints are prone to damaging deformation.This can result in water leakage into tunnels,posing great safety risks.With th...When subjected to external loads from the ground and nearby construction,tunnel segmental lining joints are prone to damaging deformation.This can result in water leakage into tunnels,posing great safety risks.With this issue in mind,we conducted a series of full-scale tests to study the effects of external loads on the waterproofing performance of longitudinal joints.A customized rig for testing segmental joints was developed to assess the effect of loading magnitude,eccentricity,and loading-unloading-reloading cycles on waterproofing performance.Additionally,the relationship between joint force,sealing gasket deformation,and waterproofing pressure was investigated.The results indicate that:(1)the sealing gasket’s compression rapidly decreases as external loads increase,which weakens the waterproofing capacity of the joint;(2)the watertightness limit dramatically decreases as the bending moment increases;(3)a loading-unloading-reloading cycle leads to degradation of the joint’s waterproofing performance.The findings of this study provide a reference for subsequent waterproofing design of segmental tunnel joints,helping ensure the safety of tunnels throughout their operational lifespans.展开更多
Groundwater leakage in shield tunnels poses a threat to the safety and durability of tunnel structures. Disturbance of adjacent constructions during the operation of shield tunnels frequently occurs in China, leading ...Groundwater leakage in shield tunnels poses a threat to the safety and durability of tunnel structures. Disturbance of adjacent constructions during the operation of shield tunnels frequently occurs in China, leading to deformation of tunnel lining and leakage in joints. Understanding the impact of adjacent constructions on the waterproofing performance of the lining is critical for the protection of shield tunnels. In this study, the weakening behavior of waterproof performance was investigated in the joints of shield tunnels under transverse deformation induced by adjacent construction. First, the relationship between the joint opening and transverse deformation under three typical adjacent constructions (upper loading, upper excavation, and side excavation) was investigated via elaborate numerical simulations. Subsequently, the evolution of the waterproof performance of a common gasket with a joint opening was examined by establishing a coupled Eulerian-Lagrangian model of joint seepage, and a formula describing the relationship between waterproof performance and joint opening was proposed. Finally, the weakening law of waterproofing performance was investigated based on the results of the aforementioned studies. It was determined that the joints with the greatest decline in waterproof performance were located at the tunnel shoulder in the upper loading case, tunnel crown in the upper excavation case, and tunnel shoulder in the side excavation case. When the waterproof performance of these joints decreased to 50% and 30%, the transverse deformations were 60 and 90 mm under upper loading, 90 and 140 mm under upper excavation, and 45 and 70 mm under side excavation, respectively. The results provide a straightforward reference for setting a controlled deformation standard considering the waterproof performance.展开更多
The waterproofing capacity of segmental joints is an essential indicator for the long-term service performance of shield tunnels.The segmental joints with double gaskets have been adopted to improve the waterproof per...The waterproofing capacity of segmental joints is an essential indicator for the long-term service performance of shield tunnels.The segmental joints with double gaskets have been adopted to improve the waterproof performance for certain tunnels with high water pressure,especially water-conveyance tunnels.This paper presents a series of waterproofing tests on joints with different settings of double gaskets via an improved test apparatus.Four cases are investigated,including(i)double gaskets with equal high/low waterproof capacity,(ii)the outer gasket with higher waterproof capacity,and(iii)the outer gasket with lower waterproof capacity.Different joint openings are also considered.Moreover,the water pressures at two cavities are continuously monitored to highlight the waterproofing mechanism and failure pattern of double gaskets.The results demonstrate that the gasket with the higher waterproofing capacity dominates the overall waterproofing capacity of joint with double gaskets;only a little enhancement of the waterproofing capacity is found for the joint with the same double gaskets.The waterproofing capacity of joints with double gaskets decreases with the increase of the joint opening.The failure pattern depends on the arrangement of double gaskets,and four stages can be identified during the whole failure process.The advantages of double gaskets in case of joint rotation are also discussed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52101328 and 52171277)the National Key Research and Development Program of China(No.2022YFE0109200)+1 种基金the Foundation of the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SZ-TD006)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZB20230653)。
文摘The waterproof performance,mechanical properties,chemical composition,microstructure,and pore structure of hydrophobically-modified geopolymer concrete are investigated before and after dry-wet cycles,to determine the long-term feasibility of using hydrophobically-modified geopolymer concrete in wet environments.We use two types of organic modifying agents:polydimethylsiloxane(PDMS)and sodium methyl siliconate(SMS).The experimental results show that incorporating 2%–6%PDMS or 5%–15%SMS can make the concrete hydrophobic,with water absorption and chloride transport rates decreasing by up to 94.3%.We also analyze the bonding modes of organic molecules and geopolymer gels,as well as their evolution mechanisms during dry-wet cycles.PDMS-modified geopolymer concrete is found to exhibit long-term waterproof performance that is not weakened by dry-wet cycles.This is attributed to the robust combination of organic components and the geopolymer gel skeleton formed through phase cross-linking.Meanwhile,PDMS-modified geopolymer concrete’s hydrophobicity,strength,and microstructure are essentially unaffected.In contrast,SMS-modified geopolymer concrete shows higher water sensitivity,although it does maintain efficient waterproof performance.Due to relatively low binding energy,the dry-wet cycles may lead to the detachment of some SMS molecules from the gel network,which results in a decrease of 18.6%in compressive strength and an increase of 37.6%in total porosity.This work confirms the utility of hydrophobically-modified geopolymer concrete as a building material for long-term service in wet environments,for instance,areas with frequent precipitation,or splash and tidal zones.
基金supported by the National Key Research and Development Program of China(No.2022YFC3800905)the National Natural Science Foundation of China(Nos.52238010,52090082,and 52108381)+2 种基金the Shanghai Science and Technology Committee Program(Nos.22XD1430200,23DZ1202806,and 21DZ1200601)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(No.2023QNRC001)the Fundamental Research Funds for the Central Universities,China.
文摘When subjected to external loads from the ground and nearby construction,tunnel segmental lining joints are prone to damaging deformation.This can result in water leakage into tunnels,posing great safety risks.With this issue in mind,we conducted a series of full-scale tests to study the effects of external loads on the waterproofing performance of longitudinal joints.A customized rig for testing segmental joints was developed to assess the effect of loading magnitude,eccentricity,and loading-unloading-reloading cycles on waterproofing performance.Additionally,the relationship between joint force,sealing gasket deformation,and waterproofing pressure was investigated.The results indicate that:(1)the sealing gasket’s compression rapidly decreases as external loads increase,which weakens the waterproofing capacity of the joint;(2)the watertightness limit dramatically decreases as the bending moment increases;(3)a loading-unloading-reloading cycle leads to degradation of the joint’s waterproofing performance.The findings of this study provide a reference for subsequent waterproofing design of segmental tunnel joints,helping ensure the safety of tunnels throughout their operational lifespans.
基金The present study was conducted with the support of the Youth Science and Technology Innovation Talent Project of Hunan Province(No.2021RC3043)National Natural Science Foundation of China(Grant Nos.52090082,51878267,52122807,and 51938005)the High-level Talent of Innovative Research Team of Hunan Province,China(No.2019RS1030).We gratefully acknowledge their financial support.
文摘Groundwater leakage in shield tunnels poses a threat to the safety and durability of tunnel structures. Disturbance of adjacent constructions during the operation of shield tunnels frequently occurs in China, leading to deformation of tunnel lining and leakage in joints. Understanding the impact of adjacent constructions on the waterproofing performance of the lining is critical for the protection of shield tunnels. In this study, the weakening behavior of waterproof performance was investigated in the joints of shield tunnels under transverse deformation induced by adjacent construction. First, the relationship between the joint opening and transverse deformation under three typical adjacent constructions (upper loading, upper excavation, and side excavation) was investigated via elaborate numerical simulations. Subsequently, the evolution of the waterproof performance of a common gasket with a joint opening was examined by establishing a coupled Eulerian-Lagrangian model of joint seepage, and a formula describing the relationship between waterproof performance and joint opening was proposed. Finally, the weakening law of waterproofing performance was investigated based on the results of the aforementioned studies. It was determined that the joints with the greatest decline in waterproof performance were located at the tunnel shoulder in the upper loading case, tunnel crown in the upper excavation case, and tunnel shoulder in the side excavation case. When the waterproof performance of these joints decreased to 50% and 30%, the transverse deformations were 60 and 90 mm under upper loading, 90 and 140 mm under upper excavation, and 45 and 70 mm under side excavation, respectively. The results provide a straightforward reference for setting a controlled deformation standard considering the waterproof performance.
基金financially supported by National Natural Science Foundation of China(52090083)Shanghai Committee of Science and Technology(20DZ1202600)China Railway Southern Investment Group Co.Ltd(Project No.ZTNF-2020-1).
文摘The waterproofing capacity of segmental joints is an essential indicator for the long-term service performance of shield tunnels.The segmental joints with double gaskets have been adopted to improve the waterproof performance for certain tunnels with high water pressure,especially water-conveyance tunnels.This paper presents a series of waterproofing tests on joints with different settings of double gaskets via an improved test apparatus.Four cases are investigated,including(i)double gaskets with equal high/low waterproof capacity,(ii)the outer gasket with higher waterproof capacity,and(iii)the outer gasket with lower waterproof capacity.Different joint openings are also considered.Moreover,the water pressures at two cavities are continuously monitored to highlight the waterproofing mechanism and failure pattern of double gaskets.The results demonstrate that the gasket with the higher waterproofing capacity dominates the overall waterproofing capacity of joint with double gaskets;only a little enhancement of the waterproofing capacity is found for the joint with the same double gaskets.The waterproofing capacity of joints with double gaskets decreases with the increase of the joint opening.The failure pattern depends on the arrangement of double gaskets,and four stages can be identified during the whole failure process.The advantages of double gaskets in case of joint rotation are also discussed.