This study investigates the mechanism of action of representative molecules of basalt fibers on the healing of water-soaked asphalt.Thermodynamic parameters,morphological characteristics,interfacial healing energy,and...This study investigates the mechanism of action of representative molecules of basalt fibers on the healing of water-soaked asphalt.Thermodynamic parameters,morphological characteristics,interfacial healing energy,and interfacial healing strength were analyzed using molecular dynamics and macroscopic tests under different time,temperature,and water conditions to evaluate the specific states and critical conditions involved in self-healing.The results indicate that basalt-fiber molecules can induce rearrangement and a combination of water-soaked asphalt at the healing interface.Hydroxyl groups with different bonding states increase the interfacial adsorption capacity of water-soaked asphalt.The interaction between basalt fiber molecules and water molecules leads to a"hoop"phenomenon,while aromatics-2 molecules exhibit a"ring band aggregation"phenomenon.The former reduces the miscibility of water and asphalt molecules,while the latter causes slow diffusion of the components.Furthermore,a micro-macro dual-scale comparison of interfacial healing strength was conducted at temperatures of 297.15 and 312.15 K to identify the strength transition point and critical temperature of 299.4 K during the self-healing process of basalt-fiber modified water-soaked asphalt.展开更多
The physical and chemical properties of the air-dried residual coal after soaking in the goaf will change,resulting in an increase in its spontaneous combustion tendency.This study aimed to look into the features and ...The physical and chemical properties of the air-dried residual coal after soaking in the goaf will change,resulting in an increase in its spontaneous combustion tendency.This study aimed to look into the features and mechanism of soaked-dried coal's spontaneous combustion.Five samples of coal were dried to various degrees,and the weight loss features during thermal processing were examined.Based on this,the pore structure and chemical structure characteristics of the coal samples with the highest tendency to spontaneous combustion were quantitatively examined,and the mechanism by which soaking-drying afected the spontaneous combustion heating process of the remaining coal in goaf was investigated in turn.The results show that T1 decreases with the increase of drying time,T2–T6 shows a fuctuating change,and the ignition activation energy of 36-S-Coal is smaller than that of other coal samples.The pore type of 36-S-Coal changes from a oneend closed impermeable pore to an open pore,and the pore group area is large.During the 36 h drying process,the internal channels of the coal were dredged,and a large number of gravels and minerals were precipitated from the pores with the air fow.A large number of gravels were around the pores to form a surface structure that was easy to adsorb various gases.Furthermore,infrared spectroscopy was used to analyze the two coal samples.It was found that soaking and drying did not change the functional group types of coal samples,but the fatty chain degree of 36-S-Coal was reduced to 1.56.It shows that the aliphatic chain structure of coal is changed after 36 h of drying after 30 days of soaking,which leads to the continuous shedding of aliphatic chain branches of residual coal,and the skeleton of coal is looser,which makes the low-temperature oxidation reaction of 36-S-Coal easier.Based on the above results,the coal-oxygen composite mechanism of water-immerseddried coal is obtained,and it is considered that the key to the spontaneous combustion oxidation process of coal is to provide oxygen atoms and accelerate the formation of peroxides.展开更多
文摘This study investigates the mechanism of action of representative molecules of basalt fibers on the healing of water-soaked asphalt.Thermodynamic parameters,morphological characteristics,interfacial healing energy,and interfacial healing strength were analyzed using molecular dynamics and macroscopic tests under different time,temperature,and water conditions to evaluate the specific states and critical conditions involved in self-healing.The results indicate that basalt-fiber molecules can induce rearrangement and a combination of water-soaked asphalt at the healing interface.Hydroxyl groups with different bonding states increase the interfacial adsorption capacity of water-soaked asphalt.The interaction between basalt fiber molecules and water molecules leads to a"hoop"phenomenon,while aromatics-2 molecules exhibit a"ring band aggregation"phenomenon.The former reduces the miscibility of water and asphalt molecules,while the latter causes slow diffusion of the components.Furthermore,a micro-macro dual-scale comparison of interfacial healing strength was conducted at temperatures of 297.15 and 312.15 K to identify the strength transition point and critical temperature of 299.4 K during the self-healing process of basalt-fiber modified water-soaked asphalt.
基金supported by the fnancial support of the General Projects of National Natural Science Foundation of China(52074156).
文摘The physical and chemical properties of the air-dried residual coal after soaking in the goaf will change,resulting in an increase in its spontaneous combustion tendency.This study aimed to look into the features and mechanism of soaked-dried coal's spontaneous combustion.Five samples of coal were dried to various degrees,and the weight loss features during thermal processing were examined.Based on this,the pore structure and chemical structure characteristics of the coal samples with the highest tendency to spontaneous combustion were quantitatively examined,and the mechanism by which soaking-drying afected the spontaneous combustion heating process of the remaining coal in goaf was investigated in turn.The results show that T1 decreases with the increase of drying time,T2–T6 shows a fuctuating change,and the ignition activation energy of 36-S-Coal is smaller than that of other coal samples.The pore type of 36-S-Coal changes from a oneend closed impermeable pore to an open pore,and the pore group area is large.During the 36 h drying process,the internal channels of the coal were dredged,and a large number of gravels and minerals were precipitated from the pores with the air fow.A large number of gravels were around the pores to form a surface structure that was easy to adsorb various gases.Furthermore,infrared spectroscopy was used to analyze the two coal samples.It was found that soaking and drying did not change the functional group types of coal samples,but the fatty chain degree of 36-S-Coal was reduced to 1.56.It shows that the aliphatic chain structure of coal is changed after 36 h of drying after 30 days of soaking,which leads to the continuous shedding of aliphatic chain branches of residual coal,and the skeleton of coal is looser,which makes the low-temperature oxidation reaction of 36-S-Coal easier.Based on the above results,the coal-oxygen composite mechanism of water-immerseddried coal is obtained,and it is considered that the key to the spontaneous combustion oxidation process of coal is to provide oxygen atoms and accelerate the formation of peroxides.