Seasonal water-level fluctuations (WLF) play a dominate role in lacustrine ecosys- tems. River-lake interaction is a direct factor in changes of seasonal lake WLF, especially for those lakes naturally connected to u...Seasonal water-level fluctuations (WLF) play a dominate role in lacustrine ecosys- tems. River-lake interaction is a direct factor in changes of seasonal lake WLF, especially for those lakes naturally connected to upstream and downstream rivers. During the past decade, the modification of WLF in the Poyang Lake (the largest freshwater lake in China) has caused intensified flood and irrigation crises, reduced water availability, compromised water quality and extensive degradation of the lake ecosystem. There has been a conjecture as to whether the modification was caused by its interactions with Yangtze River. In this study, we investi- gated the variations of seasonal WLF in China's Poyang Lake by comparing the water levels during the four distinct seasons (the dry season, the rising season, the flood season, and the retreating season) before and after 2003 when the Three Gorge Dam operated. The Water Surface Slope (WSS) was used as a representative parameter to measure the changes in river-lake interaction and its impacts on seasonal WLF. The results showed that the magni- tude of seasonal WLF has changed considerably since 2003; the seasonal WLF of the Poy- ang Lake have been significantly altered by the fact that the water levels both rise and retreat earlier in the season and lowered water levels in general. The fluctuations of river-lake in- teractions, in particular the changes during the retreating season, are mainly responsible for these variations in magnitude of seasonal WLF. This study demonstrates that WSS is a rep- resentative parameter to denote river-lake interactions, and the results indicate that more emphasis should be placed on the decrease of the Poyang Lake caused by the lowered water levels of the Yangtze River, especially in the retreating season.展开更多
The combined effect of periodic water impoundment and seasonal natural flood events has created a 30 m high water-level fluctuation zone(WLFZ) around the Three Gorges Reservoir(TGR), China, forming a unique eco-landsc...The combined effect of periodic water impoundment and seasonal natural flood events has created a 30 m high water-level fluctuation zone(WLFZ) around the Three Gorges Reservoir(TGR), China, forming a unique eco-landscape. Siltation, eutrophication, enrichment of heavy metals, and methane emissions in the WLFZ have been widely associated with sediment and soil particles generated from the upstream catchment or upland slopes. However, little attention has been paid to the complexity of sediment particle-size distributions in the WLFZ. In the present study, core samples(from a 345 cm thick sediment core from the base of the WLFZ), slope transect surface samples(across/up a WLFZ slope), and along-river/longitudinal surface samples(from the reservoir reaches) were collected. Laser granulometry and a volume-based fractal model were used to reveal the characteristics of sediment particle-size distributions. Results indicate that the alternation of coarse and fine particles in the sedimentary core profile is represented as a fluctuation of low and high values of fractal dimension(D), ranging from 2.59 to 2.77. On the WLFZ slope transect, surface sediment particles coarsen with increasing elevation, sand content increases from 3.3% to 78.5%, and D decreases from 2.76 to 2.53. Longitudinally, surface sediments demonstrate a downstream-fining trend, and D increases gradually downstream. D is significantly positively correlated with the fine particle content. We conclude that D is a useful measure for evaluating sediment particle-size distribution.展开更多
Inundation of the Three Gorges Reservoir has created a 30-m water-level fluctuation zone with seasonal hydrological alternations of submergence and exposure, which may greatly affect soil properties and bank stability...Inundation of the Three Gorges Reservoir has created a 30-m water-level fluctuation zone with seasonal hydrological alternations of submergence and exposure, which may greatly affect soil properties and bank stability. The aim of this study was to investigate the response of soil pore structure to seasonal water-level fluctuation in the reservoir, and particularly, the hydrological change of wetting and drying cycles. Soil pore structure was visualized with industrial X-ray computed tomography and digital image analysis techniques. The results showed that soil total porosity(? 100 ?m), total pore number, total throat number, and mean throat surface area increased significantly under wetting and drying cycles. Soil porosity, pore number and throat numberwithin each size class increased in the course of wetting and drying cycles. The coordination number, degree of anisotropy and fractal dimension were indicating an increase. In contrast, the mean shape factor, pore-throat ratio, and Euler-Poincaré number decreased due to wetting and drying cycles. These illustrated that the wetting and drying cycles made soil pore structure become more porous, continuous, heterogeneous and complex. It can thus be deduced that the water-level fluctuation would modify soil porosity, pore size distribution, and pore morphology in the Three Gorges Reservoir, which may have profound implications for soil processes, soil functions, and bank stability.展开更多
The water-level fluctuation zone(WLFZ) has been considered as a hotspot for mercury(Hg) methylation. Flooding-tolerant herbs are gradually acclimated to this water-land ecotone, tending to form substantial root system...The water-level fluctuation zone(WLFZ) has been considered as a hotspot for mercury(Hg) methylation. Flooding-tolerant herbs are gradually acclimated to this water-land ecotone, tending to form substantial root systems for improving erosion resistance. Accompanying rhizosphere microzone plays crucial but unclear roles in methylmercury(Me Hg) formation in the WLFZ. Thus, we conducted this study in the WLFZ of the Three Gorges Reservoir, to explore effects of the rhizosphere of a dominant flooding-tolerant herb(bermudagrass) on Me Hg production. The elevated Hg and Me Hg in rhizosphere soils suggest that the rhizosphere environment provides favorable conditions for Hg accumulation and methylation. The increased bioavailable Hg and microbial activity in the rhizosphere probably serve as important factors driving Me Hg formation in the presence of bermudagrass. Simultaneously, the rhizosphere environments changed the richness, diversity, and distribution of hgc A-containing microorganisms. Here, a typical ironreducing bacterium( Geobacteraceae) has been screened, however, the majority of hgc A genes detected in rhizosphere, near-, and non-rhizosphere soils of the WLFZ were unclassified. Collectively, these results provide new insights into the elevated Me Hg production as related to microbial processes in the rhizosphere of perennial herbs in the WLFZ, with general implications for Hg cycling in other ecosystems with water-level fluctuations.展开更多
Water-level reduction frequently occurs in deep reservoirs,but its effect on dissolved oxygen concentration is not well understood.In this study we used a well-established water qual-itymodel to illustrate effects of ...Water-level reduction frequently occurs in deep reservoirs,but its effect on dissolved oxygen concentration is not well understood.In this study we used a well-established water qual-itymodel to illustrate effects of water level dynamics on oxygen concentration in Rappbode Reservoir,Germany.We then systematically elucidated the potential of selectivewithdrawal to control hypoxia under changing water levels.Our results documented a gradual decrease of hypolimnetic oxygen concentration under decreasing water level,and hypoxia occurred when the initial level was lower than 410 m a.s.l(71 m relative to the reservoir bottom).We also suggested that changes of hypoxic region,under increasing hypolimnetic withdrawal discharge,followed a unimodal trajectory with themaximum hypoxic area projected under the discharge between 3 m^(3)/sec and 4 m^(3)/sec.Besides,our results illustrated the extent of hypoxia was most effectively inhibited if the withdrawal strategy was applied at the end of stratification with the outlet elevation at the deepest part of the reservoir.Moreover,hy-poxia can be totally avoided under a hybrid elevation withdrawal strategy using surface withdrawal during early and mid stratification,and deep withdrawal at the end of strat-ification.We further confirmed the decisive role of thermal structure in the formation of hypoxia under water-level reduction and withdrawal strategies.We believe the conclusions from this study can be applied to many deep waters in the temperate zone,and the results should guide stakeholders to mitigate negative impacts of hypoxia on aquatic ecosystems.展开更多
Based on the 2016 airgun experimental data of the Fujian Nanyi reservoir,we adopted the frequency domain water-level deconvolution method and cross-correlation time delay detection technique to study the influence of ...Based on the 2016 airgun experimental data of the Fujian Nanyi reservoir,we adopted the frequency domain water-level deconvolution method and cross-correlation time delay detection technique to study the influence of level scaling factor and the background noise level of the station on deconvolution calculation results, and analyze the effect of deconvolution on eliminating the influence of the source caused by different air-gun pressures. The results show that:( 1) When the level scaling factor is smaller,the signal to noise ratio of the waveform after the deconvolution is smaller,and when the level scaling factor is over smaller,the identification error of travel time is greater.( 2) When the SNR of the station record is higher,the recognition accuracy of travel time is higher,the influence of SNR on the reference station record is far greater than the far station,when the SNR of the far station record is more than 10,the error of travel time is within6 ms,but when the SNR of the reference station record is 30,the travel time error may reach to 20 ms.( 3) When the airgun source difference is big,the frequency domain waterlevel deconvolution method has better effect on eliminating the source influence,but the method error may be introduced when the source difference is small.展开更多
The hydrogeology of first-order streams have been evaluated from 2007 to 2009 as part of the Whitetail Basin Watershed Restoration Project in Hay Creek Canyon located 25 km north of Whitehall Montana, USA. An in-depth...The hydrogeology of first-order streams have been evaluated from 2007 to 2009 as part of the Whitetail Basin Watershed Restoration Project in Hay Creek Canyon located 25 km north of Whitehall Montana, USA. An in-depth study of the riparian area hydrogeology started in the fall of 2007 with the installation of more than 40 hand-augered deeper (〉 1 m) wells to complement preexisting driven metal pipe piezometers (± 1 m) installed in four first-order drainages. Two zones within the shallow alluvial systems were identified. This paper presents the results of a concentrated study conducted in the Hay Creek drainage within the tWO zones. Data loggers placed in some of the wells led to a gradual understanding of the water-level patterns in different vegetative types (Douglas Fir, Aspen, Willow-Alder. and Grass-Sagebrush) over the various seasons. The deeper water-level responses change from seasonal patterns to strongly diurnal during summer months. Diurnal patterns continue until leaves drop from riparian vegetation. This was expected, however, the Douglas fir trees show the same pattern. Near the end of the study a full year of water-level data showing the seasonal behavior changes were collected. Resaturation of the upper zone occurs in the fall with sources of recharge coming from up-drainage. A detailed evaluation of water-level responses from up-drainage to down-drainage piezometers occurs in a "wave-like" resaturation phenomenon that allows one to estimate the bulk hydraulic conductivity of the "alluvial system" aquifer using principles of Darcy's Law. The methods used to evaluate the hydraulic properties and seasonal water-level patterns are presented.展开更多
Urmia Lake in northwest of Iran, through the recent years has been extremely faced with the water crisis. Climate variations and anthropogenic impacts could be two main affiliated factors in this regard. We considered...Urmia Lake in northwest of Iran, through the recent years has been extremely faced with the water crisis. Climate variations and anthropogenic impacts could be two main affiliated factors in this regard. We considered the long term data series of precipitation, temperature and evaporation in monthly and yearly scales in order to compare to water-level values of Urmia Lake. The statistics approaches such as: standard deviation, trend analysis, T test, Pearson and Spearman correlations, liner regression are used to analyze all variables. The results released that the water-level of Urmia Lake along with the precipitation and temperature of the lake’s basin have experienced the periodic changes through 1961 to 2010, as there are some gradual dryness trends on the study area according to precipitation and temperature variations. Urmia Lake periodic water-level fluctuations show more significant correlation to temperature than the precipitation. Whiles, the water-level’s decreasing behavior especially through 1998 to 2010 is more harsh and different than the rate that is considered for precipitation’s decrease and temperature’s increase. Thus, there could be some anthropogenic factors in the basin which produced some supplementary causes to shrink Urmia Lake. Extracting the double precipitation over the basin through introducing and categorizing of atmospheric synoptic systems in order to cloud seeding operation could be one of urgent and innovative solutions to mitigate water crisis in the basin.展开更多
[ Objective] The research aimed to study influence of the repeated flooding on growth and development of A. calamus in water-level-fluc- tuation zone of the Three Gorges Reservoir. [ Method] A. calamus plants were exp...[ Objective] The research aimed to study influence of the repeated flooding on growth and development of A. calamus in water-level-fluc- tuation zone of the Three Gorges Reservoir. [ Method] A. calamus plants were exposed to water under the dark conditions respectively in Septem- ber 2009 and September 2010. Then, they were taken away from the water, and grew in natural conditions in the following March and April respec- tively ( marked as S1, S2, S1 and S2). The plant number was conducted statistics respectively. On May 7, the leaf number was made statistics. Length, width and rapid light responding curve of the leaf were determined. [ Result] Repeated flooding restrained significantly plant germination un- der the dark condition. Plant number in S1 and S2 groups decreased by 38.9% and 33.3% respectively compared with the control. It also reduced survival rate of the plant. Plant number in S2 group decreased by 16.7% (P 〈 0.05) compared with that of S2 group when they were taken away from the water. Both of flooding promoted elongation of the leaves, restrained leaves to grow wider, and also restrained leaf formation of the plants except for S1 and S1 groups. Total leaf length of a plant decreased markedly after the second flooding which in S1 and S2 groups were 50.6% and 36.9% respectively less than that after the first flooding. Total leaf number of the plant in S1and S2 groups reduced significantly, and they were only 63.1% and 38.5% respectively of the control. Compared with the first flooding, total leaf length of a plant in the control increased signifi- cantly and decreased remarkably in S2 group after the second flooding. Furthermore, light response ability of the relative electronic transfer rate (rETR) in S1 group wasn't significantly different from the control, and rETRmax, in S2 group was significantly less than the control. Moreover, non- photochemical quenching (NPQ) decreased remarkably in S1 and S2 groups. It indicated that A. calamus had good restore ability of the light re- sponse, but restoring of its heat dissipation capacity was slower. [ Conclusion] Repeated flooding inhibited plant growth and population recovery of A. calamus under the dark condition.展开更多
Rule curves dictating target water levels for management have been implemented in several water bodies in North America over the last 70 years or more. Anthropogenic alterations of water levels are known to affect sev...Rule curves dictating target water levels for management have been implemented in several water bodies in North America over the last 70 years or more. Anthropogenic alterations of water levels are known to affect several components of wetland ecosystems. Evaluating the influence of rule curves on biological components with simple performance indicators could help harmonize water level management with wetland integrity. We assessed the potential of using the probability of common loon nest viability as a performance indicator of long-term impacts of rule curves on nesting wetland birds. We analyzed the outcome of rule curves on the probability of loon nest viability in Rainy Lake and Namakan Reservoir, 2 regulated water bodies located along the Ontario-Minnesota border. The analysis was focused on 4 hydrological time series between 1950 and 2013: 2 sets of time series simulating rule curves used to manage the water bodies in the past decades (referred to as the 1970RC and 2000RC), one of the historical measured water levels, and one of computed natural water levels. The probability of loon nest viability under the 1970RC was 2× higher than under natural conditions in both water bodies. The probability was also 2× higher under the 2000RC than under the 1970RC in the Namakan Reservoir but not in Rainy Lake. The rule curves generally improved conditions for nesting loons in both water bodies. The presented performance indicator can be used to evaluate future rule curves before they are implemented in the Rainy-Namakan or other similar systems.展开更多
Aims Myriophyllum spicatum and Hydrilla verticillata are common submerged macrophytes in the Yangtze River basin.To investigate their tolerances and adaptations to water-level fluctuations,an experiment was conducted ...Aims Myriophyllum spicatum and Hydrilla verticillata are common submerged macrophytes in the Yangtze River basin.To investigate their tolerances and adaptations to water-level fluctuations,an experiment was conducted in a pond.Methods We designed five different amplitudes of water-level fluctuations as static,615,630,660 and 690 cm during the 74 days of the experiment.In each amplitude treatment,two cultivation methods were examined as monoculture and mixed culture.Important Findings The results showed that M.spicatum had greater morphological responses to water-level fluctuations than H.verticillata.Fluctuating amplitude had significant effects on branch number,shoot length and root dry weight(DW)of M.spicatum,whereas it only had significant effect on branch number of H.verticillata.Both fluctuating amplitude and cultivation method had significant effects on total DW of M.spicatum,which was higher in monoculture than mixed culture.The total DW of H.verticillata was affected by fluctuating amplitude only,and the largest biomass was in the amplitude of 630 cm.Fruit DW of M.spicatum was largest in the amplitude of 630 cm,high amplitude of water-level fluctuations would inhibit flowering and seed production.Root DW proportion was significantly affected by fluctuating amplitude and cultivation method in both species,and the root DW proportion of M.spicatum was significantly higher in the amplitude-of 690 cm.We conclude that moderate amplitude of water-level fluctuations can promote the distribution and growth of both species,and in order to accelerate the restoration of both species in natural habitats,the optimum amplitude should be keep at 615 to 630 cm.展开更多
Water level fluctuations (WLF) are natural patterns that are necessary for the survival of various plants,and WLF guarantee both the productivity and the biodiversity of wetlands.However,the underlying mechanisms of h...Water level fluctuations (WLF) are natural patterns that are necessary for the survival of various plants,and WLF guarantee both the productivity and the biodiversity of wetlands.However,the underlying mechanisms of how changes in vegetation are linked to seasonal WLF remain unclear.Using vegetation and hydrological data from 1989 to 2009,we identified the key seasonal fluctuations and their impacts on vegetation in the Poyang Lake wetland by utilizing a tree-based hierarchical model.According to our results: 1) WLF in summer had significant impacts on both sedges and reeds.The severe summer floods promoted the expansion of sedges,while they inhibited the expansion of reeds;2) WLF in autumn also greatly impacted sedges,while reeds were severely affected in spring.Specifically,we found that low water levels in autumn led to the expansion of sedges,and low water levels in spring led to the expansion of reeds.The results were well corroborated through comparisons of the vegetation distribution patterns over the last two decades (i.e.,the 1990s and 2000s),which may shed light on corresponding water resource and wetland management.展开更多
In this paper,the effects of foundation damage and water-level change on vibration characteristics of gravity-type caisson structure are examined by analyzing modal parameters extracted from output-only information.To...In this paper,the effects of foundation damage and water-level change on vibration characteristics of gravity-type caisson structure are examined by analyzing modal parameters extracted from output-only information.To achieve the objective,the following approaches are implemented.Firstly,vibration response analysis methods are selected to estimate power spectral density and modal parameters such as natural frequency,damping ratio and mode shape of a lab-scale caisson structural system.Secondly,vibration tests on the lab-scale caisson system are performed under a series of test scenarios which include three water-level changes and three damage levels.Thirdly,experimental modal parameters corresponding to the damaging cases as well as the water level cases are extracted by frequency domain decomposition method and stochastic subspace identification method.Finally,the effects of the water-level variation and foundation damage on the extracted modal parameters are examined to assess the feasibility of the vibration-based damage detection in gravity-type caisson structures under water-level uncertainty.展开更多
基金National Basic Research Program of China ("973" Program), No.2012CB417006 National Natural Science Foundation of China, No.41171024 No.41271500
文摘Seasonal water-level fluctuations (WLF) play a dominate role in lacustrine ecosys- tems. River-lake interaction is a direct factor in changes of seasonal lake WLF, especially for those lakes naturally connected to upstream and downstream rivers. During the past decade, the modification of WLF in the Poyang Lake (the largest freshwater lake in China) has caused intensified flood and irrigation crises, reduced water availability, compromised water quality and extensive degradation of the lake ecosystem. There has been a conjecture as to whether the modification was caused by its interactions with Yangtze River. In this study, we investi- gated the variations of seasonal WLF in China's Poyang Lake by comparing the water levels during the four distinct seasons (the dry season, the rising season, the flood season, and the retreating season) before and after 2003 when the Three Gorge Dam operated. The Water Surface Slope (WSS) was used as a representative parameter to measure the changes in river-lake interaction and its impacts on seasonal WLF. The results showed that the magni- tude of seasonal WLF has changed considerably since 2003; the seasonal WLF of the Poy- ang Lake have been significantly altered by the fact that the water levels both rise and retreat earlier in the season and lowered water levels in general. The fluctuations of river-lake in- teractions, in particular the changes during the retreating season, are mainly responsible for these variations in magnitude of seasonal WLF. This study demonstrates that WSS is a rep- resentative parameter to denote river-lake interactions, and the results indicate that more emphasis should be placed on the decrease of the Poyang Lake caused by the lowered water levels of the Yangtze River, especially in the retreating season.
基金funded by the National Natural Science Foundation of China (Grant nos. 41771320, 41771321, and 41571278)the Opening Project of Chongqing Key Laboratory of Earth Surface Processes and Environmental Remote Sensing in the Three Gorges Reservoir Area (Grant no. DBGC201801)the Sichuan Science and Technology Program (Grant no. 2018SZ0132)
文摘The combined effect of periodic water impoundment and seasonal natural flood events has created a 30 m high water-level fluctuation zone(WLFZ) around the Three Gorges Reservoir(TGR), China, forming a unique eco-landscape. Siltation, eutrophication, enrichment of heavy metals, and methane emissions in the WLFZ have been widely associated with sediment and soil particles generated from the upstream catchment or upland slopes. However, little attention has been paid to the complexity of sediment particle-size distributions in the WLFZ. In the present study, core samples(from a 345 cm thick sediment core from the base of the WLFZ), slope transect surface samples(across/up a WLFZ slope), and along-river/longitudinal surface samples(from the reservoir reaches) were collected. Laser granulometry and a volume-based fractal model were used to reveal the characteristics of sediment particle-size distributions. Results indicate that the alternation of coarse and fine particles in the sedimentary core profile is represented as a fluctuation of low and high values of fractal dimension(D), ranging from 2.59 to 2.77. On the WLFZ slope transect, surface sediment particles coarsen with increasing elevation, sand content increases from 3.3% to 78.5%, and D decreases from 2.76 to 2.53. Longitudinally, surface sediments demonstrate a downstream-fining trend, and D increases gradually downstream. D is significantly positively correlated with the fine particle content. We conclude that D is a useful measure for evaluating sediment particle-size distribution.
基金funded by the National Natural Science Foundation of China(Grant No.41771321,41771320 and 41571278)Sichuan Science and Technology Program(Grant No.2018SZ0132)
文摘Inundation of the Three Gorges Reservoir has created a 30-m water-level fluctuation zone with seasonal hydrological alternations of submergence and exposure, which may greatly affect soil properties and bank stability. The aim of this study was to investigate the response of soil pore structure to seasonal water-level fluctuation in the reservoir, and particularly, the hydrological change of wetting and drying cycles. Soil pore structure was visualized with industrial X-ray computed tomography and digital image analysis techniques. The results showed that soil total porosity(? 100 ?m), total pore number, total throat number, and mean throat surface area increased significantly under wetting and drying cycles. Soil porosity, pore number and throat numberwithin each size class increased in the course of wetting and drying cycles. The coordination number, degree of anisotropy and fractal dimension were indicating an increase. In contrast, the mean shape factor, pore-throat ratio, and Euler-Poincaré number decreased due to wetting and drying cycles. These illustrated that the wetting and drying cycles made soil pore structure become more porous, continuous, heterogeneous and complex. It can thus be deduced that the water-level fluctuation would modify soil porosity, pore size distribution, and pore morphology in the Three Gorges Reservoir, which may have profound implications for soil processes, soil functions, and bank stability.
基金the funding support from the National Natural Science Foundation of China (No. 41877384 )the Fundamental Research Funds for the Central Universities (No. XDJK2017B035 )Chongqing Graduate Scientific Research Innovation Project (No. CYS21112 ) for its support。
文摘The water-level fluctuation zone(WLFZ) has been considered as a hotspot for mercury(Hg) methylation. Flooding-tolerant herbs are gradually acclimated to this water-land ecotone, tending to form substantial root systems for improving erosion resistance. Accompanying rhizosphere microzone plays crucial but unclear roles in methylmercury(Me Hg) formation in the WLFZ. Thus, we conducted this study in the WLFZ of the Three Gorges Reservoir, to explore effects of the rhizosphere of a dominant flooding-tolerant herb(bermudagrass) on Me Hg production. The elevated Hg and Me Hg in rhizosphere soils suggest that the rhizosphere environment provides favorable conditions for Hg accumulation and methylation. The increased bioavailable Hg and microbial activity in the rhizosphere probably serve as important factors driving Me Hg formation in the presence of bermudagrass. Simultaneously, the rhizosphere environments changed the richness, diversity, and distribution of hgc A-containing microorganisms. Here, a typical ironreducing bacterium( Geobacteraceae) has been screened, however, the majority of hgc A genes detected in rhizosphere, near-, and non-rhizosphere soils of the WLFZ were unclassified. Collectively, these results provide new insights into the elevated Me Hg production as related to microbial processes in the rhizosphere of perennial herbs in the WLFZ, with general implications for Hg cycling in other ecosystems with water-level fluctuations.
基金supported by the German Research Founda-tion(DFG,grant RI 2040/4-1)the InventWater ITN(Inventive forecasting tools for adapting water quality management to a new climate)through the European Union’s Horizon 2020 research,innovation program under the Marie Skłodowska-Curie grant agreement No.956623 and UFZ Program Integra-tion Budget+3 种基金Chenxi Mi acknowledges the financial support from the National Natural Science Foundation of China(No.42107060)Liaoning Provincial Doctoral Research Startup Fund Project(No.2022-BS-174)supported by the“Xingliao Talents Plan”science and technology in-novation leading talents project of Liaoning Province(No.XLYC2002054)the National Key Research and Develop-ment Program of China(NO.2022YFF1301000-4).
文摘Water-level reduction frequently occurs in deep reservoirs,but its effect on dissolved oxygen concentration is not well understood.In this study we used a well-established water qual-itymodel to illustrate effects of water level dynamics on oxygen concentration in Rappbode Reservoir,Germany.We then systematically elucidated the potential of selectivewithdrawal to control hypoxia under changing water levels.Our results documented a gradual decrease of hypolimnetic oxygen concentration under decreasing water level,and hypoxia occurred when the initial level was lower than 410 m a.s.l(71 m relative to the reservoir bottom).We also suggested that changes of hypoxic region,under increasing hypolimnetic withdrawal discharge,followed a unimodal trajectory with themaximum hypoxic area projected under the discharge between 3 m^(3)/sec and 4 m^(3)/sec.Besides,our results illustrated the extent of hypoxia was most effectively inhibited if the withdrawal strategy was applied at the end of stratification with the outlet elevation at the deepest part of the reservoir.Moreover,hy-poxia can be totally avoided under a hybrid elevation withdrawal strategy using surface withdrawal during early and mid stratification,and deep withdrawal at the end of strat-ification.We further confirmed the decisive role of thermal structure in the formation of hypoxia under water-level reduction and withdrawal strategies.We believe the conclusions from this study can be applied to many deep waters in the temperate zone,and the results should guide stakeholders to mitigate negative impacts of hypoxia on aquatic ecosystems.
基金“Analysis of Accuracyof Airgun Source in Monitoring Crustal Media Change and Its Influence Factors”,the National Natural Science Foundation of China(41774068)and Special Fund for Science and Technology,Fujian Earthquake Agency(SF201709)
文摘Based on the 2016 airgun experimental data of the Fujian Nanyi reservoir,we adopted the frequency domain water-level deconvolution method and cross-correlation time delay detection technique to study the influence of level scaling factor and the background noise level of the station on deconvolution calculation results, and analyze the effect of deconvolution on eliminating the influence of the source caused by different air-gun pressures. The results show that:( 1) When the level scaling factor is smaller,the signal to noise ratio of the waveform after the deconvolution is smaller,and when the level scaling factor is over smaller,the identification error of travel time is greater.( 2) When the SNR of the station record is higher,the recognition accuracy of travel time is higher,the influence of SNR on the reference station record is far greater than the far station,when the SNR of the far station record is more than 10,the error of travel time is within6 ms,but when the SNR of the reference station record is 30,the travel time error may reach to 20 ms.( 3) When the airgun source difference is big,the frequency domain waterlevel deconvolution method has better effect on eliminating the source influence,but the method error may be introduced when the source difference is small.
文摘The hydrogeology of first-order streams have been evaluated from 2007 to 2009 as part of the Whitetail Basin Watershed Restoration Project in Hay Creek Canyon located 25 km north of Whitehall Montana, USA. An in-depth study of the riparian area hydrogeology started in the fall of 2007 with the installation of more than 40 hand-augered deeper (〉 1 m) wells to complement preexisting driven metal pipe piezometers (± 1 m) installed in four first-order drainages. Two zones within the shallow alluvial systems were identified. This paper presents the results of a concentrated study conducted in the Hay Creek drainage within the tWO zones. Data loggers placed in some of the wells led to a gradual understanding of the water-level patterns in different vegetative types (Douglas Fir, Aspen, Willow-Alder. and Grass-Sagebrush) over the various seasons. The deeper water-level responses change from seasonal patterns to strongly diurnal during summer months. Diurnal patterns continue until leaves drop from riparian vegetation. This was expected, however, the Douglas fir trees show the same pattern. Near the end of the study a full year of water-level data showing the seasonal behavior changes were collected. Resaturation of the upper zone occurs in the fall with sources of recharge coming from up-drainage. A detailed evaluation of water-level responses from up-drainage to down-drainage piezometers occurs in a "wave-like" resaturation phenomenon that allows one to estimate the bulk hydraulic conductivity of the "alluvial system" aquifer using principles of Darcy's Law. The methods used to evaluate the hydraulic properties and seasonal water-level patterns are presented.
文摘Urmia Lake in northwest of Iran, through the recent years has been extremely faced with the water crisis. Climate variations and anthropogenic impacts could be two main affiliated factors in this regard. We considered the long term data series of precipitation, temperature and evaporation in monthly and yearly scales in order to compare to water-level values of Urmia Lake. The statistics approaches such as: standard deviation, trend analysis, T test, Pearson and Spearman correlations, liner regression are used to analyze all variables. The results released that the water-level of Urmia Lake along with the precipitation and temperature of the lake’s basin have experienced the periodic changes through 1961 to 2010, as there are some gradual dryness trends on the study area according to precipitation and temperature variations. Urmia Lake periodic water-level fluctuations show more significant correlation to temperature than the precipitation. Whiles, the water-level’s decreasing behavior especially through 1998 to 2010 is more harsh and different than the rate that is considered for precipitation’s decrease and temperature’s increase. Thus, there could be some anthropogenic factors in the basin which produced some supplementary causes to shrink Urmia Lake. Extracting the double precipitation over the basin through introducing and categorizing of atmospheric synoptic systems in order to cloud seeding operation could be one of urgent and innovative solutions to mitigate water crisis in the basin.
基金Supported by Natural Science Foundation Project,Chongqing Science and Technology Commission(CSTC) ,China(2009BB7255)Talent Start-up Foundation Project ,Chongqing University of Arts and Science,ChinaScience Research Project,Chongqing University of Arts and Science(XZ031)
文摘[ Objective] The research aimed to study influence of the repeated flooding on growth and development of A. calamus in water-level-fluc- tuation zone of the Three Gorges Reservoir. [ Method] A. calamus plants were exposed to water under the dark conditions respectively in Septem- ber 2009 and September 2010. Then, they were taken away from the water, and grew in natural conditions in the following March and April respec- tively ( marked as S1, S2, S1 and S2). The plant number was conducted statistics respectively. On May 7, the leaf number was made statistics. Length, width and rapid light responding curve of the leaf were determined. [ Result] Repeated flooding restrained significantly plant germination un- der the dark condition. Plant number in S1 and S2 groups decreased by 38.9% and 33.3% respectively compared with the control. It also reduced survival rate of the plant. Plant number in S2 group decreased by 16.7% (P 〈 0.05) compared with that of S2 group when they were taken away from the water. Both of flooding promoted elongation of the leaves, restrained leaves to grow wider, and also restrained leaf formation of the plants except for S1 and S1 groups. Total leaf length of a plant decreased markedly after the second flooding which in S1 and S2 groups were 50.6% and 36.9% respectively less than that after the first flooding. Total leaf number of the plant in S1and S2 groups reduced significantly, and they were only 63.1% and 38.5% respectively of the control. Compared with the first flooding, total leaf length of a plant in the control increased signifi- cantly and decreased remarkably in S2 group after the second flooding. Furthermore, light response ability of the relative electronic transfer rate (rETR) in S1 group wasn't significantly different from the control, and rETRmax, in S2 group was significantly less than the control. Moreover, non- photochemical quenching (NPQ) decreased remarkably in S1 and S2 groups. It indicated that A. calamus had good restore ability of the light re- sponse, but restoring of its heat dissipation capacity was slower. [ Conclusion] Repeated flooding inhibited plant growth and population recovery of A. calamus under the dark condition.
文摘Rule curves dictating target water levels for management have been implemented in several water bodies in North America over the last 70 years or more. Anthropogenic alterations of water levels are known to affect several components of wetland ecosystems. Evaluating the influence of rule curves on biological components with simple performance indicators could help harmonize water level management with wetland integrity. We assessed the potential of using the probability of common loon nest viability as a performance indicator of long-term impacts of rule curves on nesting wetland birds. We analyzed the outcome of rule curves on the probability of loon nest viability in Rainy Lake and Namakan Reservoir, 2 regulated water bodies located along the Ontario-Minnesota border. The analysis was focused on 4 hydrological time series between 1950 and 2013: 2 sets of time series simulating rule curves used to manage the water bodies in the past decades (referred to as the 1970RC and 2000RC), one of the historical measured water levels, and one of computed natural water levels. The probability of loon nest viability under the 1970RC was 2× higher than under natural conditions in both water bodies. The probability was also 2× higher under the 2000RC than under the 1970RC in the Namakan Reservoir but not in Rainy Lake. The rule curves generally improved conditions for nesting loons in both water bodies. The presented performance indicator can be used to evaluate future rule curves before they are implemented in the Rainy-Namakan or other similar systems.
基金National Natural Science Foundation of China(4100117)Major Science and Technology Program for Water Pollution Control and Treatment of China(2008ZX07103-004).
文摘Aims Myriophyllum spicatum and Hydrilla verticillata are common submerged macrophytes in the Yangtze River basin.To investigate their tolerances and adaptations to water-level fluctuations,an experiment was conducted in a pond.Methods We designed five different amplitudes of water-level fluctuations as static,615,630,660 and 690 cm during the 74 days of the experiment.In each amplitude treatment,two cultivation methods were examined as monoculture and mixed culture.Important Findings The results showed that M.spicatum had greater morphological responses to water-level fluctuations than H.verticillata.Fluctuating amplitude had significant effects on branch number,shoot length and root dry weight(DW)of M.spicatum,whereas it only had significant effect on branch number of H.verticillata.Both fluctuating amplitude and cultivation method had significant effects on total DW of M.spicatum,which was higher in monoculture than mixed culture.The total DW of H.verticillata was affected by fluctuating amplitude only,and the largest biomass was in the amplitude of 630 cm.Fruit DW of M.spicatum was largest in the amplitude of 630 cm,high amplitude of water-level fluctuations would inhibit flowering and seed production.Root DW proportion was significantly affected by fluctuating amplitude and cultivation method in both species,and the root DW proportion of M.spicatum was significantly higher in the amplitude-of 690 cm.We conclude that moderate amplitude of water-level fluctuations can promote the distribution and growth of both species,and in order to accelerate the restoration of both species in natural habitats,the optimum amplitude should be keep at 615 to 630 cm.
基金the National Key Research and Development Project of China (No.2016YFC0402204)the National Natural Science Foundation of China (Grant No.41571107)+1 种基金the Key Research Program of the Chinese Academy of Sciences (No.KFZD-SW-318)the Key Project of Water Resources Department of Jiangxi Province (No.KT201503).
文摘Water level fluctuations (WLF) are natural patterns that are necessary for the survival of various plants,and WLF guarantee both the productivity and the biodiversity of wetlands.However,the underlying mechanisms of how changes in vegetation are linked to seasonal WLF remain unclear.Using vegetation and hydrological data from 1989 to 2009,we identified the key seasonal fluctuations and their impacts on vegetation in the Poyang Lake wetland by utilizing a tree-based hierarchical model.According to our results: 1) WLF in summer had significant impacts on both sedges and reeds.The severe summer floods promoted the expansion of sedges,while they inhibited the expansion of reeds;2) WLF in autumn also greatly impacted sedges,while reeds were severely affected in spring.Specifically,we found that low water levels in autumn led to the expansion of sedges,and low water levels in spring led to the expansion of reeds.The results were well corroborated through comparisons of the vegetation distribution patterns over the last two decades (i.e.,the 1990s and 2000s),which may shed light on corresponding water resource and wetland management.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry ofEducation,Science and Technology(Grant no.NRF-2013R1A1A2A10012040)the financial support of the project Development of Inspection Equipment Technology for Harbor Facilities funded by Korea Ministry of Land,Transportation,and Maritime Affairs
文摘In this paper,the effects of foundation damage and water-level change on vibration characteristics of gravity-type caisson structure are examined by analyzing modal parameters extracted from output-only information.To achieve the objective,the following approaches are implemented.Firstly,vibration response analysis methods are selected to estimate power spectral density and modal parameters such as natural frequency,damping ratio and mode shape of a lab-scale caisson structural system.Secondly,vibration tests on the lab-scale caisson system are performed under a series of test scenarios which include three water-level changes and three damage levels.Thirdly,experimental modal parameters corresponding to the damaging cases as well as the water level cases are extracted by frequency domain decomposition method and stochastic subspace identification method.Finally,the effects of the water-level variation and foundation damage on the extracted modal parameters are examined to assess the feasibility of the vibration-based damage detection in gravity-type caisson structures under water-level uncertainty.