Investigating the ecological impact of land use change in the context of the construction of national water network project is crucial,as it is imperative for achieving the sustainable development goals of the nationa...Investigating the ecological impact of land use change in the context of the construction of national water network project is crucial,as it is imperative for achieving the sustainable development goals of the national water network and guaranteeing regional ecological stability.Using the Danjiangkou Reservoir Area(DRA),China as the study area,this paper first examined the spatiotemporal dynamics of natural landscape patterns and ecosystem service values(ESV)in the DRA from 2000 to 2018 and then investigated the spatial clustering characteristics of the ESV using spatial statistical analysis tools.Finally,the patch-generating land use simulation(PLUS)model was used to simulate the natural landscape and future changes in the ESV of the DRA from 2018 to 2028 under four different development scenarios:business as usual(BAU),economic development(ED),ecological protection(EP),and shoreline protection(SP).The results show that:during 2000-2018,the construction of water facilities had a significant impact on regional land use/land cover(LULC)change,with a 24830 ha increase in watershed area.ESV exhibited an increasing trend,with a significant and growing spatial clustering effect.The transformation of farmland to water bodies led to accelerated ESV growth,while the transformation of forest land to farmland led to a decrease in the ESV.Normalized difference vegetation index(NDVI)had the strongest effect on the ESV.ESV exhibited a continuous increase from 2018 to 2028 under all the simulation scenarios.The EP scenario had the greatest increase in ESV,while the ED scenario had the smallest increase.The findings suggest that projected land use patterns under different scenarios have varied impacts on ecosystem services(ESs)and that the management and planning of the DRA should balance social,economic,ecological,and security benefits.nomic,ecological,and security benefits.展开更多
The majority of water utilities,particularly public service providers such as Gidole town,are struggling to deliver a sufficient and consistent supply of water in Ethiopia's developing towns.The primary objective ...The majority of water utilities,particularly public service providers such as Gidole town,are struggling to deliver a sufficient and consistent supply of water in Ethiopia's developing towns.The primary objective of this study was to assess the hydraulic performance of water supply distribution system in Gidole Town,Ethiopia,a representative case of the challenges facing public water utilities in developing towns.The WaterGEMS v8i hydraulic model was utilized to simulate and evaluate the distribution network's performance.The system was configured as a looped network and analyzed against standard permitted pressure and velocity values in the distribution system.The model was effectively calibrated(coefficient of determination(R^(2))=0.969)using measured and observed pressure data.The model simulation run was conducted at peak and low hourly demand with 1.9 and 0.25 hourly factors,respectively.The estimated water demand of the town is 1284.3m^(3)/day(48.4 liters per capita per day),and it would be increased to 3099.77m^(3)/day(66.03 l/c/d)by the 2037 design period.The system experiences significant non-revenue water losses(75,434.11m^(3)/year),accounting for 29.9%of total water production;as a result,the present water supply coverage of the town is only 33.6%.Hydraulic simulations under peak and low demand scenarios revealed nodes with pressures outside the normal range,indicating system-wide inefficiencies.These findings highlight a combined issue of large physical losses and insufficient capacity of the water supply in the town,which is typical of many municipal systems in developing regions.The study concludes that strategic infrastructure rehabilitation,with an emphasis on pressure management and leak reduction,is not only a town necessity but a fundamental requirement for improving water security and financial sustainability for utilities in Ethiopia and similar contexts.The findings and methodology have been forwarded to town's water supply project and institutional development departments for immediate future implementation and provide a replicable framework for evidence-based investment and planning in other struggling municipalities in similar situations.展开更多
Resilient smart urban water distribution networks are essential to ensure smooth urban operation and maintain daily water services.However,the dynamics and complexity of smart water distribution networks make its re-s...Resilient smart urban water distribution networks are essential to ensure smooth urban operation and maintain daily water services.However,the dynamics and complexity of smart water distribution networks make its re-silience study face many challenges.The introduction of digital twin technology provides an innovative solution for the resilience study of smart water distribution networks,which can more effectively support the network’s real-time monitoring and intelligent control.This paper proposes a digital twin architecture of smart water dis-tribution networks,laying the foundation for the resilience assessment of water distribution networks.Based on this,a performance evaluation model based on user satisfaction is proposed,which can more intuitively and effectively reflect the performance of urban water supply services.Meanwhile,we propose a method to quantify the importance of water distribution pipes’residual resilience,considering the time value to optimize the re-covery sequence of failed pipes and develop targeted preventive maintenance strategies.Finally,to validate the effectiveness of the proposed method,this paper applies it to a water distribution network.The results show that the proposed method can significantly improve the resilience and enhance the overall resilience of smart urban water distribution networks.展开更多
In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs a...In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs and pressure drops in water distribution networks. The proposed approach combines the artificial neural network, genetic algorithm, and fuzzy inference system to improve the performance of the supervisory control and data acquisition stations through a new control philosophy for instruments and control valves in the reservoirs of the water transfer networks. First, a multi-core artificial neural network model, including a multi-layer perceptron and radial based function, is proposed to forecast the daily consumption of the water in a reservoir. A genetic algorithm is proposed to optimize the parameters of the artificial neural networks. Then, the online height of water in the reservoir and the output of artificial neural networks are used as inputs of a fuzzy inference system to estimate the flow rate of the reservoir inlet. Finally, the estimated inlet flow is translated into the input valve position using a transform control unit supported by a nonlinear autoregressive exogenous model. The proposed approach is applied in the Tehran water transfer network. The results of this study show that the usage of the proposed approach significantly reduces the deviation of the reservoir height from the desired levels.展开更多
In this paper we address the problem of pressure management in water supply system (WSS) network. The model-based predictive control (MPC) strategies have some important features to deal with WSS. By hydraulic ana...In this paper we address the problem of pressure management in water supply system (WSS) network. The model-based predictive control (MPC) strategies have some important features to deal with WSS. By hydraulic analysis of WSS, the predictive model is derived from the dynamic model and static model of WSS. Through WSS, the consumers' demands are required to be met at all times according to some operational constraints that must be satisfied. The constraints of flow through actuators, the water level of reservoirs and the consumer areas' pressure demand are determined by a specific system. In this work, we develop a constrained MPC controller that considers the zone control of the pressure outputs and incorporates steady state economic targets in the control cost function. The designed management strategies are applied to a case study and simulation results, covering different aspects, are provided. The output nodal pressure can be controlled in the desired zone by optimal scheduling the actuators of the WSS. If the variation range of reservoir's water level is broader, the rate of flow through the actuators is gentle, and vice versa.展开更多
The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw wate...The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, PH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Based on neural network and rule models, an expert system for determining the optimum chemical dosage rate is developed and used in a water treatment work, and the results of actual runs show that in the condition of satisfying the demand of drinking water quality, the usage of coagulant is lowered.展开更多
In this paper, we propose a formal definition, general structure and work principle of the Neural Network Expert System (NNES) based on joint-type knowledge representation, and show a practical application example usi...In this paper, we propose a formal definition, general structure and work principle of the Neural Network Expert System (NNES) based on joint-type knowledge representation, and show a practical application example using NNES for forecasting the water invasion of coal mine.展开更多
With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The...With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.展开更多
A systematic investigation is made on the problems which are related to the optimal control of the municipal water distribution network.A mathematical model of forecasting the water short term demand is proposed using...A systematic investigation is made on the problems which are related to the optimal control of the municipal water distribution network.A mathematical model of forecasting the water short term demand is proposed using the time series trigonometric function analysis method;the service discharge based macroscopic model of network performance is established using the network structuring method;a relatively satisfactory mathematical model for the optimal control of water distribution network is put forward in view of security and economy,and solved by the constrained mixed discrete variable complex arithmetic.The model is applied in many examples and the results are satisfactory.展开更多
The problem of optimal synthesis of an integrated water system is addressed in this study, where water using processes and water treatment operations are combined into a single network such that the total cost of fres...The problem of optimal synthesis of an integrated water system is addressed in this study, where water using processes and water treatment operations are combined into a single network such that the total cost of fresh water and wastewater treatment is globally minimized. A superstructure that incorporates all feasible design alterna- tives for wastewater treatment, reuse and recycle, is synthesized with a non-linear programming model. An evolutionary approach--an improved particle swarm optimization is proposed for optimizing such systems. Two simple examples are .Presented.to illustrate the global op.timization of inte.grated water networks using the proposed algorithm.展开更多
Water-using operations in the process industry have demands for water usually both on water quality and temperature, and the existing mathematical models of heat exchange networks cannot guarantee the energy performan...Water-using operations in the process industry have demands for water usually both on water quality and temperature, and the existing mathematical models of heat exchange networks cannot guarantee the energy performance of a water network optimal. In this paper, the effects of non-isothermal merging on energy performance of water allocation networks are analyzed, which include utility consumption, total heat exchange load, and number of heat exchange matches. Three principles are proposed to express the effects of non-isothermal merging on energy performance of water allocation networks. A rule of non-isothermal merging without increasing utility consumption is deduced. And an approach to improve energy performance of water allocation network is presented. A case study is given to demonstrate the method.展开更多
An urban water supply network(WSN)is a crucial lifeline system that helps to maintain the normal functioning of modern society.However,the hydraulic analysis of a significantly damaged WSN that suffers from pipe break...An urban water supply network(WSN)is a crucial lifeline system that helps to maintain the normal functioning of modern society.However,the hydraulic analysis of a significantly damaged WSN that suffers from pipe breaks or leaks remains challenging.In this paper,a probability-based framework is proposed to assess the functionality of WSNs in the aftermath of powerful earthquakes.The serviceability of the WSN is quantified by using a comprehensive index that considers nodal water flow and nodal pressure.This index includes a coefficient that reflects the relative importance of these two parameters.The demand reduction(DR)method,which reduces the water flow of nodes while preventing the negative pressure of nodes,is proposed.The difference between the negative pressure elimination(NPE)method and the DR method is discussed by using the example of a WSN in a medium-sized city in China.The functionality values of the WSN are 0.76 and 0.99 when nodal pressure and nodal demands are used respectively as the index of system serviceability at an intensity level that would pertain to an earthquake considered to occur at a maximum level.When the intensity of ground motion is as high as 0.4 g,the DR method requires fewer samples than the NPE method to obtain accurate results.The NPE method eliminates most of the pipes,which may be unrealistic.展开更多
The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation pres...The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation presented in this paper is suggesting a new strategy to evaluate the seismic serviceability of WSNs,utilizing their operational physical mechanism.On one hand,this method can obtain the seismic serviceability of each node as well as entire WSNs.On the other hand,this method can dynamically reflect the propagation of randomness from ground motions to WSNs.First,a finite element model is established to capture the seismic response of buried pipe networks,and a leakage model is suggested to obtain the leakage area of WSNs.Second,the transient flow analysis of WSNs with or without leakage is derived to obtain dynamic water flow and pressure.Third,the seismic serviceability of WSNs is analyzed based on the probability density evolution method(PDEM).Finally,the seismic serviceability of a real WSN in Mianzhu city is assessed to illustrate the method.The case study shows that randomness from the ground motions can obviously affect the leakage state and the probability density of the nodal head during earthquakes.展开更多
The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But t...The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But the interaction between different parts demands that each part is designed iteratively to optimize the whole water network. Therefore, on the basis of the separated design a water netvrork superstructure including reuse, regeneration and wastewater treatment is established from the system engineering point of view. And a multi-objective adaptive simulated annealing genetic algorithm is adopted to simultaneously integrate the overall water netvrork to balance the economic and environmental effects. The algorithm overcomes the defect of local optimum of simulated annealing (SA), avoids the pre-maturation of genetic algorithm (GA) and finds a set of solutions (pareto front) in acceptable computer time. Prom the pareto front, a point with minimum fresh water consumption will be extended to zero discharge as our ultimate goal.展开更多
A strategy for water and wastewater minimization is developed for continuous water utilization systems involving fixed flowrate(non-mass-transfer-based)operations,based on the fictitious operations that is introduced ...A strategy for water and wastewater minimization is developed for continuous water utilization systems involving fixed flowrate(non-mass-transfer-based)operations,based on the fictitious operations that is introduced to represent the water losing and/or generating operations and a modified concentration interval analysis(MCIA) technique.This strategy is a simple,nongraphical,and noniterative procedure and is suitable for the quick yields of targets and the identification of pinch point location.Moreover,on the basis of the target method,a heuristic-based approach is also presented to generate water utilization networks,which could be demonstrated to be optimum ones. The proposed approaches are illustrated with example problems.展开更多
This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an im...This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an important parameter of the problem. By treating the direct and indirect heat transfers separately, target freshwater and energy consumption as well as the operation split conditions are first obtained. Subsequently, a mixed integer non-linear programming (MINLP) model is established for the design of water network and the heat exchanger network (HEN). The proposed systematic approach is limited to a single contaminant. Example from literature is used to illustrate the applicability of the approach.展开更多
A new methodology was proposed for contamination source identification using information provided by consumer complaints from a probabilistic view.Due to the high uncertainties of information derived from users,the ob...A new methodology was proposed for contamination source identification using information provided by consumer complaints from a probabilistic view.Due to the high uncertainties of information derived from users,the objective of the proposed methodology doesn't aim to capture a unique solution,but to minimize the number of possible contamination sources.In the proposed methodology,all the possible pollution nodes are identified through the CSA methodology firstly.And then based on the principle of total probability formula,the probability of each possible contamination node is obtained through a series of calculation.According to magnitude of the probability,the number of possible pollution nodes is minimized.The effectiveness and feasibility of the methodology is demonstrated through an application to a real case of ZJ City.Four scenarios were designed to investigate the influence of different uncertainties on the results in this case.The results show that pollutant concentration,injection duration,the number of consumer complaints nodes used for calculation and the prior probability with which consumers would complaint have no particular effect on the identification of contamination source.Three nodes were selected as the most possible pollution sources in water pipe network of ZJ City which includes more than 3 000 nodes.The results show the potential of the proposed method to identify contamination source through consumer complaints.展开更多
This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model...This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.展开更多
In this paper,we improve object functions and constraint conditions of genetic algorithms (GAs) applied in PRCs identification of water networks.This identification method can increase calculation efficiency,but can n...In this paper,we improve object functions and constraint conditions of genetic algorithms (GAs) applied in PRCs identification of water networks.This identification method can increase calculation efficiency,but can not solve an identification problem with infinitely many solutions well.Then we propose PRCs identification based on the minimal norm method,which satisfies observability conditions and has advantages of high computing efficiency and short time consumption.The two identification methods are applied in a water network,and their identification results are compared under the same conditions.From the results,we know that PRCs identification based on the minimal norm method has advantages of higher computing efficiency,shorter time consumption and higher precision.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.42371315,41901213)Natural Science Foundation of Hubei Province(No.2020CFB856)Project of Changjiang Survey,Planning,Design and Research Co.,Ltd(No.CX2022Z23)。
文摘Investigating the ecological impact of land use change in the context of the construction of national water network project is crucial,as it is imperative for achieving the sustainable development goals of the national water network and guaranteeing regional ecological stability.Using the Danjiangkou Reservoir Area(DRA),China as the study area,this paper first examined the spatiotemporal dynamics of natural landscape patterns and ecosystem service values(ESV)in the DRA from 2000 to 2018 and then investigated the spatial clustering characteristics of the ESV using spatial statistical analysis tools.Finally,the patch-generating land use simulation(PLUS)model was used to simulate the natural landscape and future changes in the ESV of the DRA from 2018 to 2028 under four different development scenarios:business as usual(BAU),economic development(ED),ecological protection(EP),and shoreline protection(SP).The results show that:during 2000-2018,the construction of water facilities had a significant impact on regional land use/land cover(LULC)change,with a 24830 ha increase in watershed area.ESV exhibited an increasing trend,with a significant and growing spatial clustering effect.The transformation of farmland to water bodies led to accelerated ESV growth,while the transformation of forest land to farmland led to a decrease in the ESV.Normalized difference vegetation index(NDVI)had the strongest effect on the ESV.ESV exhibited a continuous increase from 2018 to 2028 under all the simulation scenarios.The EP scenario had the greatest increase in ESV,while the ED scenario had the smallest increase.The findings suggest that projected land use patterns under different scenarios have varied impacts on ecosystem services(ESs)and that the management and planning of the DRA should balance social,economic,ecological,and security benefits.nomic,ecological,and security benefits.
文摘The majority of water utilities,particularly public service providers such as Gidole town,are struggling to deliver a sufficient and consistent supply of water in Ethiopia's developing towns.The primary objective of this study was to assess the hydraulic performance of water supply distribution system in Gidole Town,Ethiopia,a representative case of the challenges facing public water utilities in developing towns.The WaterGEMS v8i hydraulic model was utilized to simulate and evaluate the distribution network's performance.The system was configured as a looped network and analyzed against standard permitted pressure and velocity values in the distribution system.The model was effectively calibrated(coefficient of determination(R^(2))=0.969)using measured and observed pressure data.The model simulation run was conducted at peak and low hourly demand with 1.9 and 0.25 hourly factors,respectively.The estimated water demand of the town is 1284.3m^(3)/day(48.4 liters per capita per day),and it would be increased to 3099.77m^(3)/day(66.03 l/c/d)by the 2037 design period.The system experiences significant non-revenue water losses(75,434.11m^(3)/year),accounting for 29.9%of total water production;as a result,the present water supply coverage of the town is only 33.6%.Hydraulic simulations under peak and low demand scenarios revealed nodes with pressures outside the normal range,indicating system-wide inefficiencies.These findings highlight a combined issue of large physical losses and insufficient capacity of the water supply in the town,which is typical of many municipal systems in developing regions.The study concludes that strategic infrastructure rehabilitation,with an emphasis on pressure management and leak reduction,is not only a town necessity but a fundamental requirement for improving water security and financial sustainability for utilities in Ethiopia and similar contexts.The findings and methodology have been forwarded to town's water supply project and institutional development departments for immediate future implementation and provide a replicable framework for evidence-based investment and planning in other struggling municipalities in similar situations.
基金the financial support for this research from the Program for the Program for young backbone teachers in Universities of Henan Province(No.2021GGJS007).
文摘Resilient smart urban water distribution networks are essential to ensure smooth urban operation and maintain daily water services.However,the dynamics and complexity of smart water distribution networks make its re-silience study face many challenges.The introduction of digital twin technology provides an innovative solution for the resilience study of smart water distribution networks,which can more effectively support the network’s real-time monitoring and intelligent control.This paper proposes a digital twin architecture of smart water dis-tribution networks,laying the foundation for the resilience assessment of water distribution networks.Based on this,a performance evaluation model based on user satisfaction is proposed,which can more intuitively and effectively reflect the performance of urban water supply services.Meanwhile,we propose a method to quantify the importance of water distribution pipes’residual resilience,considering the time value to optimize the re-covery sequence of failed pipes and develop targeted preventive maintenance strategies.Finally,to validate the effectiveness of the proposed method,this paper applies it to a water distribution network.The results show that the proposed method can significantly improve the resilience and enhance the overall resilience of smart urban water distribution networks.
文摘In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs and pressure drops in water distribution networks. The proposed approach combines the artificial neural network, genetic algorithm, and fuzzy inference system to improve the performance of the supervisory control and data acquisition stations through a new control philosophy for instruments and control valves in the reservoirs of the water transfer networks. First, a multi-core artificial neural network model, including a multi-layer perceptron and radial based function, is proposed to forecast the daily consumption of the water in a reservoir. A genetic algorithm is proposed to optimize the parameters of the artificial neural networks. Then, the online height of water in the reservoir and the output of artificial neural networks are used as inputs of a fuzzy inference system to estimate the flow rate of the reservoir inlet. Finally, the estimated inlet flow is translated into the input valve position using a transform control unit supported by a nonlinear autoregressive exogenous model. The proposed approach is applied in the Tehran water transfer network. The results of this study show that the usage of the proposed approach significantly reduces the deviation of the reservoir height from the desired levels.
基金supported by National Natural Science Foundation of China(61233004,61221003,61374109,61104091,61304078,61473184)National Basic Research Program of China(973 Program)(2013CB035500)+2 种基金the International Cooperation Program of Shanghai Science and Technology Commission(12230709600)the Higher Education Research Fund for the Doctoral Program of China(20120073130006,20110073110018)the China Postdoctoral Science Foundation(2013M540364)
基金supported by National Natural Science Foundation of China(Nos.61233004 and 61221003)the National Basic Research Program of China(973 Program)(No.2013CB035500)the Higher Education Research Fund for the Doctoral Program of China(No.20120073130006)
文摘In this paper we address the problem of pressure management in water supply system (WSS) network. The model-based predictive control (MPC) strategies have some important features to deal with WSS. By hydraulic analysis of WSS, the predictive model is derived from the dynamic model and static model of WSS. Through WSS, the consumers' demands are required to be met at all times according to some operational constraints that must be satisfied. The constraints of flow through actuators, the water level of reservoirs and the consumer areas' pressure demand are determined by a specific system. In this work, we develop a constrained MPC controller that considers the zone control of the pressure outputs and incorporates steady state economic targets in the control cost function. The designed management strategies are applied to a case study and simulation results, covering different aspects, are provided. The output nodal pressure can be controlled in the desired zone by optimal scheduling the actuators of the WSS. If the variation range of reservoir's water level is broader, the rate of flow through the actuators is gentle, and vice versa.
基金This work was supported by the project 863 ofChina(No.863-511092)
文摘The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, PH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Based on neural network and rule models, an expert system for determining the optimum chemical dosage rate is developed and used in a water treatment work, and the results of actual runs show that in the condition of satisfying the demand of drinking water quality, the usage of coagulant is lowered.
文摘In this paper, we propose a formal definition, general structure and work principle of the Neural Network Expert System (NNES) based on joint-type knowledge representation, and show a practical application example using NNES for forecasting the water invasion of coal mine.
文摘With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.
基金Foundation for University Key Teacher by the Min-istry of Education
文摘A systematic investigation is made on the problems which are related to the optimal control of the municipal water distribution network.A mathematical model of forecasting the water short term demand is proposed using the time series trigonometric function analysis method;the service discharge based macroscopic model of network performance is established using the network structuring method;a relatively satisfactory mathematical model for the optimal control of water distribution network is put forward in view of security and economy,and solved by the constrained mixed discrete variable complex arithmetic.The model is applied in many examples and the results are satisfactory.
基金Supported by Tianjin Municipal Science Foundation (No. 07JCZDJC 02500)
文摘The problem of optimal synthesis of an integrated water system is addressed in this study, where water using processes and water treatment operations are combined into a single network such that the total cost of fresh water and wastewater treatment is globally minimized. A superstructure that incorporates all feasible design alterna- tives for wastewater treatment, reuse and recycle, is synthesized with a non-linear programming model. An evolutionary approach--an improved particle swarm optimization is proposed for optimizing such systems. Two simple examples are .Presented.to illustrate the global op.timization of inte.grated water networks using the proposed algorithm.
基金Supported by the National Natural Science Foundation of China (20436040).
文摘Water-using operations in the process industry have demands for water usually both on water quality and temperature, and the existing mathematical models of heat exchange networks cannot guarantee the energy performance of a water network optimal. In this paper, the effects of non-isothermal merging on energy performance of water allocation networks are analyzed, which include utility consumption, total heat exchange load, and number of heat exchange matches. Three principles are proposed to express the effects of non-isothermal merging on energy performance of water allocation networks. A rule of non-isothermal merging without increasing utility consumption is deduced. And an approach to improve energy performance of water allocation network is presented. A case study is given to demonstrate the method.
基金the Institute of Engineering Mechanics(IEM),China Earthquake Administration(CEA)under Grant No.2019EEEVL0505the National Natural Science Foundation of China under Grant No.51908519and the Scientific Research Fund of the IEM,CEA under Grant No.2019B02。
文摘An urban water supply network(WSN)is a crucial lifeline system that helps to maintain the normal functioning of modern society.However,the hydraulic analysis of a significantly damaged WSN that suffers from pipe breaks or leaks remains challenging.In this paper,a probability-based framework is proposed to assess the functionality of WSNs in the aftermath of powerful earthquakes.The serviceability of the WSN is quantified by using a comprehensive index that considers nodal water flow and nodal pressure.This index includes a coefficient that reflects the relative importance of these two parameters.The demand reduction(DR)method,which reduces the water flow of nodes while preventing the negative pressure of nodes,is proposed.The difference between the negative pressure elimination(NPE)method and the DR method is discussed by using the example of a WSN in a medium-sized city in China.The functionality values of the WSN are 0.76 and 0.99 when nodal pressure and nodal demands are used respectively as the index of system serviceability at an intensity level that would pertain to an earthquake considered to occur at a maximum level.When the intensity of ground motion is as high as 0.4 g,the DR method requires fewer samples than the NPE method to obtain accurate results.The NPE method eliminates most of the pipes,which may be unrealistic.
基金National Natural Science Foundation of China under Grant No.5210082055China Postdoctoral Science Foundation under Grant No.2021M690278。
文摘The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation presented in this paper is suggesting a new strategy to evaluate the seismic serviceability of WSNs,utilizing their operational physical mechanism.On one hand,this method can obtain the seismic serviceability of each node as well as entire WSNs.On the other hand,this method can dynamically reflect the propagation of randomness from ground motions to WSNs.First,a finite element model is established to capture the seismic response of buried pipe networks,and a leakage model is suggested to obtain the leakage area of WSNs.Second,the transient flow analysis of WSNs with or without leakage is derived to obtain dynamic water flow and pressure.Third,the seismic serviceability of WSNs is analyzed based on the probability density evolution method(PDEM).Finally,the seismic serviceability of a real WSN in Mianzhu city is assessed to illustrate the method.The case study shows that randomness from the ground motions can obviously affect the leakage state and the probability density of the nodal head during earthquakes.
文摘The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But the interaction between different parts demands that each part is designed iteratively to optimize the whole water network. Therefore, on the basis of the separated design a water netvrork superstructure including reuse, regeneration and wastewater treatment is established from the system engineering point of view. And a multi-objective adaptive simulated annealing genetic algorithm is adopted to simultaneously integrate the overall water netvrork to balance the economic and environmental effects. The algorithm overcomes the defect of local optimum of simulated annealing (SA), avoids the pre-maturation of genetic algorithm (GA) and finds a set of solutions (pareto front) in acceptable computer time. Prom the pareto front, a point with minimum fresh water consumption will be extended to zero discharge as our ultimate goal.
文摘A strategy for water and wastewater minimization is developed for continuous water utilization systems involving fixed flowrate(non-mass-transfer-based)operations,based on the fictitious operations that is introduced to represent the water losing and/or generating operations and a modified concentration interval analysis(MCIA) technique.This strategy is a simple,nongraphical,and noniterative procedure and is suitable for the quick yields of targets and the identification of pinch point location.Moreover,on the basis of the target method,a heuristic-based approach is also presented to generate water utilization networks,which could be demonstrated to be optimum ones. The proposed approaches are illustrated with example problems.
基金Supported by the Major Project of National Natural Science Foundation of China (No.20409205) and National High Technology Research and Development Program of China (No.G20070040).
文摘This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an important parameter of the problem. By treating the direct and indirect heat transfers separately, target freshwater and energy consumption as well as the operation split conditions are first obtained. Subsequently, a mixed integer non-linear programming (MINLP) model is established for the design of water network and the heat exchanger network (HEN). The proposed systematic approach is limited to a single contaminant. Example from literature is used to illustrate the applicability of the approach.
基金Project(50908165) supported by the National Natural Science Foundation of China
文摘A new methodology was proposed for contamination source identification using information provided by consumer complaints from a probabilistic view.Due to the high uncertainties of information derived from users,the objective of the proposed methodology doesn't aim to capture a unique solution,but to minimize the number of possible contamination sources.In the proposed methodology,all the possible pollution nodes are identified through the CSA methodology firstly.And then based on the principle of total probability formula,the probability of each possible contamination node is obtained through a series of calculation.According to magnitude of the probability,the number of possible pollution nodes is minimized.The effectiveness and feasibility of the methodology is demonstrated through an application to a real case of ZJ City.Four scenarios were designed to investigate the influence of different uncertainties on the results in this case.The results show that pollutant concentration,injection duration,the number of consumer complaints nodes used for calculation and the prior probability with which consumers would complaint have no particular effect on the identification of contamination source.Three nodes were selected as the most possible pollution sources in water pipe network of ZJ City which includes more than 3 000 nodes.The results show the potential of the proposed method to identify contamination source through consumer complaints.
基金This work has been partly funded by the National Natural Science Foundation of China(No.50078048).
文摘This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.
基金Sponsored by the National"Eleventh-five"Tackle Key Problem Program-China Science and Technology Support Project(Grant No.2006BAJ01A04)
文摘In this paper,we improve object functions and constraint conditions of genetic algorithms (GAs) applied in PRCs identification of water networks.This identification method can increase calculation efficiency,but can not solve an identification problem with infinitely many solutions well.Then we propose PRCs identification based on the minimal norm method,which satisfies observability conditions and has advantages of high computing efficiency and short time consumption.The two identification methods are applied in a water network,and their identification results are compared under the same conditions.From the results,we know that PRCs identification based on the minimal norm method has advantages of higher computing efficiency,shorter time consumption and higher precision.