To investigate the influence of diagenetic water media on the hydrogen isotopes of individual sedimentary aromatic compounds,a series of hydrous pyrolyses were conducted on herbaceous peat.Polycyclic aromatic hydrocar...To investigate the influence of diagenetic water media on the hydrogen isotopes of individual sedimentary aromatic compounds,a series of hydrous pyrolyses were conducted on herbaceous peat.Polycyclic aromatic hydrocarbons(PAHs)in hydrous pyrolysed samples and their hydrogen isotopic composition characteristics were studied.The aqueous medium demonstrated a significant influence on the hydrogen isotopic composition of the individual PAHs generated during pyrolysis.The results showed that the PAHs formed after pyrolysis in the presence of a saltwater medium with high δD value from a salt lake had a heavy hydrogen isotopic composition.The PAHs formed after pyrolysis in the presence of a fresh water medium with low δD value from a swamp had a light hydrogen isotopic composition.The difference in the average PAHδD value between the two hydrous experiments varied from -174‰ to -109‰,suggesting that the hydrogen isotopic composition of individual sedimentary PAHs can reflect the source of the diagenetic water medium.In addition,a comparative study found that the hydrogen isotopes of PAHs were superior to those of n-alkanes in the same sample for diagenetic water indications.The results indicated that the exchange of water-derived inorganic hydrogen and organic hydrogen was more intensive in freshwater experiments than in saltwater experiments.With an increase in the simulation temperature,the average δD value of PAHs generated in the hydrous simulation experiments showed an increasing trend,reflecting that the δD value of sedimentary PAHs formed with the participation of diagenetic water media was still closely related to the thermal maturity of organic matter.Comparative studies showed that theδD values of different types of organic compounds produced by hydrous pyrolysis of peat were in the order,PAHs>n-alkanes>methane.展开更多
Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enh...Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enhanced thermo-hydraulic performance. Thermo-hydraulic design of CHEs (Compact heat exchangers) is strongly dependent upon the predicted/measured dimensionless performance (Colburnj factor and Fanning friction vs. Reynolds number) of heat transfer surfaces. This paper describes the numerical analysis to study the heat transfer coefficient and friction factor of Serrated fins in water medium. CFD (Computational fluid dynamics) methodology has been used to develop the single phase water heat transfer coefficient and friction factor correlations for serrated fins using ANSYS Fluent 14.5. The results are compared with previous air-cooled models and experimental results of water. The water cooled CFD analysis results shows that the Prandtl number has a large effect on the Nusselt number of the serrated fin geometry. Finally, the generalized correlations are developed for serrated fins taking all geometrical parameters into account. This numerical estimation can reduce the number of tests/experiments to a minimum for similar applications.展开更多
The article represents the generalizing data for the studying of the effect of hypomagnetic field on physico-chemistry properties of water and bio-objects. It was revealed the changing state of water: increasing of it...The article represents the generalizing data for the studying of the effect of hypomagnetic field on physico-chemistry properties of water and bio-objects. It was revealed the changing state of water: increasing of its oxidation-reduction potential and oxidative properties as magnetic induction attenuated pointing to a natural decline, that testifies about the regular decreasing of internal energy of water molecules, which, in our opinion, is caused the inhibition of the germination of seeds of the highest plants, embryonic development of Planorbarius corneus and the changing of energy state of growing mediums for cell culture of mammals. It is supposed that namely the changing state of water is the main component in the effects of weakening of magnetic field on the studying bio-objects.展开更多
[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.W...[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.Wu were treated by water (CK), 10 mg/L ABT+ water, 10 mg/L IAA+ water, 10 mg/L ABT+ hoagland solution, 10 mg/L IAA+ hoagland solution, then the rooting process was observed and the formation rate of callus, rooting rate, number of rooting, and root length were investigated and analyzed. [Result] ABT and IAA had obvious influences on callus induction, rooting rate and the number of root of Abies beshanzuensis M.H.Wu by water culture, so they were suitable to be used in water propagation of Abies beshanzuensis M.H.Wu. The treatments of phytohormones had no regular influences on the longest root length and average root length. The nutrient solutions would not generate obvious influence on propagation of Abies beshanzuensis M.H.Wu at firstly stage, but they generated influence on root growth after rooting. [Conclusion] The research provided new ideas for propagation of Abies beshanzuensis M.H.Wu, which could make it out of endangerment situation quickly.展开更多
The water medium(WM) retarder is an auxiliary braking device that could convert the kinetic energy of the vehicle to the thermal energy of the coolant, and it is used instead of the service brake under non-emergency...The water medium(WM) retarder is an auxiliary braking device that could convert the kinetic energy of the vehicle to the thermal energy of the coolant, and it is used instead of the service brake under non-emergency braking conditions. This paper analyzes the flow distribution based on a mathematical model and analyzes the key factors that could affect the filling ratio and the braking torque of the WM retarder. Computational fluid dynamics(CFD) simulations are conducted to compute the braking torque, and theresults are verified by experiments. It is shown that the filling ratio and the braking torque can be expressed by the mathematical model proposed in this paper. Compared with the Reynolds averaged Navier-Stokes(RANS) turbulent model, the shear stress transport(SST) turbulent model can more accurately simulate the braking torque. Finally, the flow distribution and the flow character in the WM retarders are analyzed.展开更多
The water medium hydraulic retarder is the latest type of auxiliary braking device and has the characteristics of high power density,large braking torque,and compact structure.During traveling,this device can convert ...The water medium hydraulic retarder is the latest type of auxiliary braking device and has the characteristics of high power density,large braking torque,and compact structure.During traveling,this device can convert the kinetic energy of a vehicle to the heat energy of the cooling liquid and replace the service brake under non-emergency braking conditions.With regard to the constant-speed function of the water medium hydraulic retarder,this study designs a controller based on the neural network proportional-integral-derivative(PID)algorithm to achieve the steady traveling of the vehicle at constant velocity during a downhill course by controlling the filling ratio of the water medium hydraulic retarder.To validate the algorithm’s effectiveness,the dynamic model of the heavy-duty vehicle in the downhill process and the physical model of the water medium hydraulic retarder are developed.Three operating conditions,including a fixed slope,step-changing slope,and continuous changing slope,are set,and a simulation test is carried out in the MATLAB/Simulink environment.The neural network PID algorithm has better adaptability in controlling than the traditional PID algorithm.Thus,it controls the water medium hydraulic retarder such that the braking requirements of heavy-duty vehicles under a changing slope working condi-tion are satisfied,and it performs constant-speed control when the vehicle travels downhill.Therefore,the proposed control method can significantly improve the safety of road traffic.展开更多
Objective: To ascertain the influence of light intensity and water content of medium on the total dendrobine of Dendrobium nobile(D. nobile).Method: The principal component analysis combined with total dendrobine accu...Objective: To ascertain the influence of light intensity and water content of medium on the total dendrobine of Dendrobium nobile(D. nobile).Method: The principal component analysis combined with total dendrobine accumulation was conducted to assess the yield and quality of D. nobile in all treatments. In the experiment, D. nobile plants were cultivated in greenhouse as tested materials, and complete test of 9 treatments was adopted with relative light intensities 75.02%, 39.74%,29.93% and relative water content of medium 50%, 65%, 80%. The plants were treated in June and harvested till December. Indexes including agronomic traits, fresh weight and dry weight of stem and leaf, ash content, extract, and dendrobine were measured.Results: Under the light intensity treatments of 75.02% with 50%, 65%, 80% water content of medium, the basal stems of plants were comparatively thicker with more leaves, and the fresh weight and dry weight of stems and leaves were significantly higher than other 6 treatments.Leaves in all treatments contained dendrobine. Under the light intensity treatments of 75.02%with 50%, 65%, 80% water content of medium, dendrobine content of leaves was lower while dendrobine contents of other treatments were more than 0.60%. After comprehensive assessment through the principal component analysis and total dendrobine accumulation, the results showed that 3 treatments with relative light intensity of 75.02% ranked the top three.Conclusions: In brief, the moderately strong light intensity and water content of medium from low to medium can facilitate the growth and yield of D. nobile plants, while light intensity from moderately weak to weak can enhance the dendrobine content.展开更多
The comb-type breakwater(CTB)has been proposed and investigated in recent years due to its advantages in terms of deep-water adaptability,material saving and water exchanges.All existing empirical formulae for CTBs ha...The comb-type breakwater(CTB)has been proposed and investigated in recent years due to its advantages in terms of deep-water adaptability,material saving and water exchanges.All existing empirical formulae for CTBs have been so far restricted to the water level above the bottom of the superstructure,which mainly occurs under the high tides or storm tides.However,based on recent engineering applications and experimental observations,the most severe conditions for CTBs are more likely to occur under a medium water level,because impulsive wave pressure may occur due to interactions between waves and the special chamber in CTBs.Meanwhile,during the most of construction and operation periods,the CTBs are mainly working under the medium water levels,i.e.,water levels below the bottom of the superstructure.In this study,the effects of main influence parameters on the horizontal wave force coefficient and wave transmission coefficient for open CTBs(with partially immersed side plates)under medium water levels were investigated based on a 3D numerical wave flume and corresponding empirical formulae were proposed.It is indicated that the location of the side plate related to the main caisson has significant influence on the hydrodynamic performance of CTBs.In engineering applications,the location of the side plate can be designed at b/L≤0.15 or b/L≥0.3(where b is the distance between the side plate and the front face of the main caisson and L is the incident wave length)for efficiently lowering the horizontal wave force and wave transmission.The flow mechanism of impulsive wave force on CTBs was revealed based on synchronous analyses of flow fields and pressure distribution.Through appropriate design of the height of the superstructure according to H/hD≤1.0 or H/hD≥1.5(where H is the incident wave height and hD is the distance between the still water level and the bottom of the superstructure),the likely impulsive wave pressure on the side plate can also be diminished.展开更多
Dose in radiation therapy has been reported as the water-equivalent dose using conventional dose calculation algorithms. The Monte Carlo (MC) algorithm employs characterization of human tissues by elemental compositio...Dose in radiation therapy has been reported as the water-equivalent dose using conventional dose calculation algorithms. The Monte Carlo (MC) algorithm employs characterization of human tissues by elemental composition and mass density. It enables more accurate dose calculation for radiation therapy treatment planning and typically reports absorbed dose to medium. Whether one should use dose to medium or tissue (Dm) in place of dose to water (Dw) for MC treatment planning remains the subject of debate. The aim of the current study is to evaluate the differences between dose-volume indices for Dm and Dw MC-calculated IMRT plans. Thirty-seven spine patients were selected for this study. The IMRT optimization and MC calculations were performed using the iPlan RT DoseTM ver 4.1.2 (Brainlab, Munich, Germany) treatment planning system (TPS) with an X-ray Voxel Monte Carlo (XVMC) dose calculation engine. Dw and Dm results for target and critical structures were evaluated using the dose-volume-based indices. Systematic differences between dose-volume indices computed with Dw and Dm were up to 5.2%, 4.2%, and 4.5% for D2, D50 and D98 indices of the clinical target volume (CTV), respectively and up to 1% for the critical structure dose indices. Our study demonstrates that employing Dm in place of Dw in MC-calculated IMRT treatment plans introduces a significant systematic difference in target DVHs. We recommend that for diffused target structures (such as spine tumors), dose to water is a better quantity for dose prescription in photon beam treatment planning using existing MC TPS. While for critical structures, it would be reasonable to report Dm always. However in future with the availability of finer spatial resolution, Dm will be the most suitable variable for both target and critical structures’ dose prescription and reporting in MC treatment planning.展开更多
Introduction: To compare the measured dose distributions to calculated ones in dose-to-water (Dw) and dose-to-medium (Dm) reporting modes for simple plans and patient-specific intensity modulated radiation therapy (IM...Introduction: To compare the measured dose distributions to calculated ones in dose-to-water (Dw) and dose-to-medium (Dm) reporting modes for simple plans and patient-specific intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans using ArcCHECK with a fixed phantom density. Methods: The recommended density value of 1.18 g/cm3 for Acuros XB and X-ray voxel Monte Carlo was assigned to ArcCHECK on CT images. A total of 45 simple plans, including a 1-field plan, a 3-field plan, a 4-field plan, a half-arc plan from 270° to 90°, and a full-arc plan, were assessed. Subsequently, the patient-specific 96 IMRT and VMAT plans were evaluated. Gamma analysis with a 3% normalized global dose error and a 3 mm distance-to-agreement criteria (γ3%G/3mm) was performed in the Dw and Dm. The change in γ3%G/3mm between Dw and Dm were statistically analyzed using JMPPro11 software. Results: The median values of γ3%G/3mm for all simple plans for Dw and Dm were 98.1% (range, 75.2% - 100%) and 95.5% (range, 23.7% - 100%), respectively (p 0.01). In the patient-specific IMRT and VMAT plans, the median values of γ3%G/3mm for Dw and Dm were 98.6% (range, 90.1% - 100%) and 90.5% (range, 38.5% - 97.2%), respectively (p 0.01). Conclusion: Our results showed that the calculated and measured dose distributions were in good agreement for Dw, but were not for Dm. From the viewpoint of the rationale of dosimetry, Dw shows better agreement with measured dose distribution when using the fixedphantom density recommended by the vendor.展开更多
Porous haydite used as waste filter medium was prepared by dreging lake sludge to help solve the treatment problem of sludge and realize its reclamation. Several calcination regimes were considered and their effects o...Porous haydite used as waste filter medium was prepared by dreging lake sludge to help solve the treatment problem of sludge and realize its reclamation. Several calcination regimes were considered and their effects on the pore structure and the properties such as the strength, the density, the filtering ability and the phosphate absorption ability of the haydite were investigated, For the mixture of 60% lake sludge and 40% fly ash in this experiment, the calcination regime with a pre-caleination period at about 600℃, a temperature keeping period at 1 200 ℃ and a moderate cooling rate are recommended to prepare haydite with reasonable pore structure and good performances for its usage as the waste water filter media.展开更多
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures meas...A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs.展开更多
To understand the influence of the diagenetic water medium on the isotopic compositions of thermogenic coalbed gas, both hydrous and anhydrous closed-system pyrolyses were performed at temperatures of 250°C to 65...To understand the influence of the diagenetic water medium on the isotopic compositions of thermogenic coalbed gas, both hydrous and anhydrous closed-system pyrolyses were performed at temperatures of 250°C to 650°C on an herbaceous marsh peat. Compared to the results of anhydrous pyrolysis, the hydrocarbon gases generated from hydrous pyrolyses have very different hydrogen isotopic compositions. However, the carbon isotopic compositions of the hydrocarbon gases became only slightly heavier in hydrous pyrolysis, compared to that from anhydrous pyrolysis. With the progress of thermal evolution from peat to a more advanced thermal maturity of vitrinite reflectance values(Ro) of 5.5% during the pyrolysis, the difference in the average δD value increased from 52‰ to 64‰ between the hydrous pyrolysis with saltwater and anhydrous pyrolysis and increased from 18‰ to 29‰ between the hydrous pyrolysis with freshwater and anhydrous pyrolysis, respectively. The difference in the average δ^(13)C value was only 1‰–2‰ between the hydrous and anhydrous pyrolysis. The relationships between the δD values of the generated hydrocarbon gases and Ro values as well as among δD values of the hydrocarbon gas species are established. The close relationships among these parameters suggest that the water medium had a significant effect on the hydrogen isotopic composition and a minimal effect on the carbon isotopic composition of the hydrocarbon gases. The results of these pyrolyses may provide information for the understanding of the genesis of coalbed gas from herbaceous marsh material with the participation of different diagenetic water media.展开更多
This paper examines the two-phase flow for a horizontal well penetrating a naturally fractured reservoir with edge water injection by means of a fixed streamlinemodel,The mathematical model of the verical two-dimensio...This paper examines the two-phase flow for a horizontal well penetrating a naturally fractured reservoir with edge water injection by means of a fixed streamlinemodel,The mathematical model of the verical two-dimensional flow or oil-water for a horizontal well in a medium with double-porosity is established ,and whose accuratesolutions are obtained by using the characteristic method .The saturation distributionsin the fractured system and the matrix system as well as the formula of the time of water free production are presented .All these results provide a theoretical basis and a computing method for oil displacement by edge water from naturally fracturedreservirs.展开更多
The penetration of water during water flooding has been observed over many years using several methods. A microfocused X-ray computed tomography scanner can be used to directly observe 3D water flooding in a nondestru...The penetration of water during water flooding has been observed over many years using several methods. A microfocused X-ray computed tomography scanner can be used to directly observe 3D water flooding in a nondestructive manner. To eliminate the possibility of false images being produced because of X-ray broadening effects, we developed a visualization method by arranging the brightness distribution of all phases involved. Water flooding experiments were conducted using oil-wet and water-wet porous media. The water phase was injected upward into packed glass beads containing an oil phase, and the process was scanned every minute until steady state was reached. Using this scheme, real-time, the water invasion pattern and oil trapping process in clusters of pores and individual pores can be observed clearly. By eliminating false images, the boundary of each phase could be identified with high precision, even in a single pore. Porelevel phenomena, including snap off (which has never before been captured in a real 3D porous medium), piston-like displacement, and the curvature of the interface, were also observed. Direct measurement of the pore throat radius and the contact angle between the wetting and nonwetting phases gave an approximation of the capillary pressure during the piston-like displacement and snap-off processes.展开更多
The most secure method in providing water in the dry and semi-dry regions is the use of underground water sources and due to over consumption of water aquifers capacities, most of fields and specially Imamzadeh Jafar ...The most secure method in providing water in the dry and semi-dry regions is the use of underground water sources and due to over consumption of water aquifers capacities, most of fields and specially Imamzadeh Jafar are faced with negative performance and balance, which threatens the land subsiding. The plateau with the annual raining of 438 millimeters has 169 deep and semi-deep wells with annual 36.68 million consumption and this issue has increased the research signification, in order to protect and relive the required water aquifers, there is a need to predict the underground water level accurately in different condition. In this research, by the use of balance equation and modflow software in Imamzadeh Jafar, water aquifer was analyzed within seven scenario. The underground water level evaluation for the short run periods for 2 years and middle term of 4 years and 12 years of long term was performed;and the results showed that the performance and balance of the plateau was increased due to increase of water consumption compared to the water aquifer quantity in the region that was negative. To the point that the 1, 3, 4, 5, 7 scenarios (minimum 0.17 and maximum -11.34) and 2, 6 scenarios in different timely periods show that the underground water saving volume is positive (minimum 3.64 and maximum 19.83).展开更多
We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,5...We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,50,100,and 150 g kg-1dry wood fibers.Density of all treatments was kept constant at 0.67 g cm-3.The water-repellent property of organo-silane significantly reduced water absorption(WA) and thickness swelling but mechanical properties declined due to the reduced proportion of wood-fiber as organo-silane was added to the matrix:the compression ratio of MDF panels and the integrity among wood-fibers both declined,resulting in reduced mechanical properties.We recommend use of 50 g of NOS/kg wood-fiber to improve WA and thickness swelling while retaining acceptable mechanical properties.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41972110 and 41772108)。
文摘To investigate the influence of diagenetic water media on the hydrogen isotopes of individual sedimentary aromatic compounds,a series of hydrous pyrolyses were conducted on herbaceous peat.Polycyclic aromatic hydrocarbons(PAHs)in hydrous pyrolysed samples and their hydrogen isotopic composition characteristics were studied.The aqueous medium demonstrated a significant influence on the hydrogen isotopic composition of the individual PAHs generated during pyrolysis.The results showed that the PAHs formed after pyrolysis in the presence of a saltwater medium with high δD value from a salt lake had a heavy hydrogen isotopic composition.The PAHs formed after pyrolysis in the presence of a fresh water medium with low δD value from a swamp had a light hydrogen isotopic composition.The difference in the average PAHδD value between the two hydrous experiments varied from -174‰ to -109‰,suggesting that the hydrogen isotopic composition of individual sedimentary PAHs can reflect the source of the diagenetic water medium.In addition,a comparative study found that the hydrogen isotopes of PAHs were superior to those of n-alkanes in the same sample for diagenetic water indications.The results indicated that the exchange of water-derived inorganic hydrogen and organic hydrogen was more intensive in freshwater experiments than in saltwater experiments.With an increase in the simulation temperature,the average δD value of PAHs generated in the hydrous simulation experiments showed an increasing trend,reflecting that the δD value of sedimentary PAHs formed with the participation of diagenetic water media was still closely related to the thermal maturity of organic matter.Comparative studies showed that theδD values of different types of organic compounds produced by hydrous pyrolysis of peat were in the order,PAHs>n-alkanes>methane.
文摘Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enhanced thermo-hydraulic performance. Thermo-hydraulic design of CHEs (Compact heat exchangers) is strongly dependent upon the predicted/measured dimensionless performance (Colburnj factor and Fanning friction vs. Reynolds number) of heat transfer surfaces. This paper describes the numerical analysis to study the heat transfer coefficient and friction factor of Serrated fins in water medium. CFD (Computational fluid dynamics) methodology has been used to develop the single phase water heat transfer coefficient and friction factor correlations for serrated fins using ANSYS Fluent 14.5. The results are compared with previous air-cooled models and experimental results of water. The water cooled CFD analysis results shows that the Prandtl number has a large effect on the Nusselt number of the serrated fin geometry. Finally, the generalized correlations are developed for serrated fins taking all geometrical parameters into account. This numerical estimation can reduce the number of tests/experiments to a minimum for similar applications.
文摘The article represents the generalizing data for the studying of the effect of hypomagnetic field on physico-chemistry properties of water and bio-objects. It was revealed the changing state of water: increasing of its oxidation-reduction potential and oxidative properties as magnetic induction attenuated pointing to a natural decline, that testifies about the regular decreasing of internal energy of water molecules, which, in our opinion, is caused the inhibition of the germination of seeds of the highest plants, embryonic development of Planorbarius corneus and the changing of energy state of growing mediums for cell culture of mammals. It is supposed that namely the changing state of water is the main component in the effects of weakening of magnetic field on the studying bio-objects.
基金Supported by Science and Technology Plan of Zhejiang Province(2005C32036)National Natural Science Foundation of China(30700644)~~
文摘[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.Wu were treated by water (CK), 10 mg/L ABT+ water, 10 mg/L IAA+ water, 10 mg/L ABT+ hoagland solution, 10 mg/L IAA+ hoagland solution, then the rooting process was observed and the formation rate of callus, rooting rate, number of rooting, and root length were investigated and analyzed. [Result] ABT and IAA had obvious influences on callus induction, rooting rate and the number of root of Abies beshanzuensis M.H.Wu by water culture, so they were suitable to be used in water propagation of Abies beshanzuensis M.H.Wu. The treatments of phytohormones had no regular influences on the longest root length and average root length. The nutrient solutions would not generate obvious influence on propagation of Abies beshanzuensis M.H.Wu at firstly stage, but they generated influence on root growth after rooting. [Conclusion] The research provided new ideas for propagation of Abies beshanzuensis M.H.Wu, which could make it out of endangerment situation quickly.
基金supported by the Program for New Century Excellent Talents in University(Grant No.NCET-08-0248)the 985 Project Automotive Engineering of Jilin University
文摘The water medium(WM) retarder is an auxiliary braking device that could convert the kinetic energy of the vehicle to the thermal energy of the coolant, and it is used instead of the service brake under non-emergency braking conditions. This paper analyzes the flow distribution based on a mathematical model and analyzes the key factors that could affect the filling ratio and the braking torque of the WM retarder. Computational fluid dynamics(CFD) simulations are conducted to compute the braking torque, and theresults are verified by experiments. It is shown that the filling ratio and the braking torque can be expressed by the mathematical model proposed in this paper. Compared with the Reynolds averaged Navier-Stokes(RANS) turbulent model, the shear stress transport(SST) turbulent model can more accurately simulate the braking torque. Finally, the flow distribution and the flow character in the WM retarders are analyzed.
基金funded by The National Key R&D Program of China(2016YFB0101402).
文摘The water medium hydraulic retarder is the latest type of auxiliary braking device and has the characteristics of high power density,large braking torque,and compact structure.During traveling,this device can convert the kinetic energy of a vehicle to the heat energy of the cooling liquid and replace the service brake under non-emergency braking conditions.With regard to the constant-speed function of the water medium hydraulic retarder,this study designs a controller based on the neural network proportional-integral-derivative(PID)algorithm to achieve the steady traveling of the vehicle at constant velocity during a downhill course by controlling the filling ratio of the water medium hydraulic retarder.To validate the algorithm’s effectiveness,the dynamic model of the heavy-duty vehicle in the downhill process and the physical model of the water medium hydraulic retarder are developed.Three operating conditions,including a fixed slope,step-changing slope,and continuous changing slope,are set,and a simulation test is carried out in the MATLAB/Simulink environment.The neural network PID algorithm has better adaptability in controlling than the traditional PID algorithm.Thus,it controls the water medium hydraulic retarder such that the braking requirements of heavy-duty vehicles under a changing slope working condi-tion are satisfied,and it performs constant-speed control when the vehicle travels downhill.Therefore,the proposed control method can significantly improve the safety of road traffic.
基金supported by Natural Science Foundation of China(No.81603237)Joint Funding Project of Guizhou Province[QKH LH Zi(2015)No.7670]+4 种基金Youth Science and Technology Talent Development Project of Education Department in Guizhou Province[QJH KY Zi(2016)No.119]Natural Science Foundation of Guizhou Province[QKH Basics(2017)No.1403]Talent Base Project of Organization Department in Guizhou Province[QRLF(2013)No.15]Key Discipline Project of Education Department in Guizhou Province[QXWH Zi ZDXK(2014)No.8]Regular Higher Education Institution Project of Key Laboratory of Genetic Improvement and Physiology and Ecology of Grain and Oil Crops of Guizhou Province of China[Grant No.KY(2015)333]
文摘Objective: To ascertain the influence of light intensity and water content of medium on the total dendrobine of Dendrobium nobile(D. nobile).Method: The principal component analysis combined with total dendrobine accumulation was conducted to assess the yield and quality of D. nobile in all treatments. In the experiment, D. nobile plants were cultivated in greenhouse as tested materials, and complete test of 9 treatments was adopted with relative light intensities 75.02%, 39.74%,29.93% and relative water content of medium 50%, 65%, 80%. The plants were treated in June and harvested till December. Indexes including agronomic traits, fresh weight and dry weight of stem and leaf, ash content, extract, and dendrobine were measured.Results: Under the light intensity treatments of 75.02% with 50%, 65%, 80% water content of medium, the basal stems of plants were comparatively thicker with more leaves, and the fresh weight and dry weight of stems and leaves were significantly higher than other 6 treatments.Leaves in all treatments contained dendrobine. Under the light intensity treatments of 75.02%with 50%, 65%, 80% water content of medium, dendrobine content of leaves was lower while dendrobine contents of other treatments were more than 0.60%. After comprehensive assessment through the principal component analysis and total dendrobine accumulation, the results showed that 3 treatments with relative light intensity of 75.02% ranked the top three.Conclusions: In brief, the moderately strong light intensity and water content of medium from low to medium can facilitate the growth and yield of D. nobile plants, while light intensity from moderately weak to weak can enhance the dendrobine content.
基金financially supported by the General Program of the National Natural Science Foundation of China(Grant No.51979192)the National Key Rsearch and Development Program of China(Grant Nos.2020YFE0201200 and 2021YFB2600700)the Program of China Communications Construction Company Limited(Grant No.2018-ZJKJ-01).
文摘The comb-type breakwater(CTB)has been proposed and investigated in recent years due to its advantages in terms of deep-water adaptability,material saving and water exchanges.All existing empirical formulae for CTBs have been so far restricted to the water level above the bottom of the superstructure,which mainly occurs under the high tides or storm tides.However,based on recent engineering applications and experimental observations,the most severe conditions for CTBs are more likely to occur under a medium water level,because impulsive wave pressure may occur due to interactions between waves and the special chamber in CTBs.Meanwhile,during the most of construction and operation periods,the CTBs are mainly working under the medium water levels,i.e.,water levels below the bottom of the superstructure.In this study,the effects of main influence parameters on the horizontal wave force coefficient and wave transmission coefficient for open CTBs(with partially immersed side plates)under medium water levels were investigated based on a 3D numerical wave flume and corresponding empirical formulae were proposed.It is indicated that the location of the side plate related to the main caisson has significant influence on the hydrodynamic performance of CTBs.In engineering applications,the location of the side plate can be designed at b/L≤0.15 or b/L≥0.3(where b is the distance between the side plate and the front face of the main caisson and L is the incident wave length)for efficiently lowering the horizontal wave force and wave transmission.The flow mechanism of impulsive wave force on CTBs was revealed based on synchronous analyses of flow fields and pressure distribution.Through appropriate design of the height of the superstructure according to H/hD≤1.0 or H/hD≥1.5(where H is the incident wave height and hD is the distance between the still water level and the bottom of the superstructure),the likely impulsive wave pressure on the side plate can also be diminished.
文摘Dose in radiation therapy has been reported as the water-equivalent dose using conventional dose calculation algorithms. The Monte Carlo (MC) algorithm employs characterization of human tissues by elemental composition and mass density. It enables more accurate dose calculation for radiation therapy treatment planning and typically reports absorbed dose to medium. Whether one should use dose to medium or tissue (Dm) in place of dose to water (Dw) for MC treatment planning remains the subject of debate. The aim of the current study is to evaluate the differences between dose-volume indices for Dm and Dw MC-calculated IMRT plans. Thirty-seven spine patients were selected for this study. The IMRT optimization and MC calculations were performed using the iPlan RT DoseTM ver 4.1.2 (Brainlab, Munich, Germany) treatment planning system (TPS) with an X-ray Voxel Monte Carlo (XVMC) dose calculation engine. Dw and Dm results for target and critical structures were evaluated using the dose-volume-based indices. Systematic differences between dose-volume indices computed with Dw and Dm were up to 5.2%, 4.2%, and 4.5% for D2, D50 and D98 indices of the clinical target volume (CTV), respectively and up to 1% for the critical structure dose indices. Our study demonstrates that employing Dm in place of Dw in MC-calculated IMRT treatment plans introduces a significant systematic difference in target DVHs. We recommend that for diffused target structures (such as spine tumors), dose to water is a better quantity for dose prescription in photon beam treatment planning using existing MC TPS. While for critical structures, it would be reasonable to report Dm always. However in future with the availability of finer spatial resolution, Dm will be the most suitable variable for both target and critical structures’ dose prescription and reporting in MC treatment planning.
文摘Introduction: To compare the measured dose distributions to calculated ones in dose-to-water (Dw) and dose-to-medium (Dm) reporting modes for simple plans and patient-specific intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans using ArcCHECK with a fixed phantom density. Methods: The recommended density value of 1.18 g/cm3 for Acuros XB and X-ray voxel Monte Carlo was assigned to ArcCHECK on CT images. A total of 45 simple plans, including a 1-field plan, a 3-field plan, a 4-field plan, a half-arc plan from 270° to 90°, and a full-arc plan, were assessed. Subsequently, the patient-specific 96 IMRT and VMAT plans were evaluated. Gamma analysis with a 3% normalized global dose error and a 3 mm distance-to-agreement criteria (γ3%G/3mm) was performed in the Dw and Dm. The change in γ3%G/3mm between Dw and Dm were statistically analyzed using JMPPro11 software. Results: The median values of γ3%G/3mm for all simple plans for Dw and Dm were 98.1% (range, 75.2% - 100%) and 95.5% (range, 23.7% - 100%), respectively (p 0.01). In the patient-specific IMRT and VMAT plans, the median values of γ3%G/3mm for Dw and Dm were 98.6% (range, 90.1% - 100%) and 90.5% (range, 38.5% - 97.2%), respectively (p 0.01). Conclusion: Our results showed that the calculated and measured dose distributions were in good agreement for Dw, but were not for Dm. From the viewpoint of the rationale of dosimetry, Dw shows better agreement with measured dose distribution when using the fixedphantom density recommended by the vendor.
基金Funded by the Fundamental Research Funds for the Central Universities(No.2011-IV-010)the National Natural Science Foundation of China(No.50902106)the Program for New Century Excellent Talents in University of China(No.NCET-10-0660)
文摘Porous haydite used as waste filter medium was prepared by dreging lake sludge to help solve the treatment problem of sludge and realize its reclamation. Several calcination regimes were considered and their effects on the pore structure and the properties such as the strength, the density, the filtering ability and the phosphate absorption ability of the haydite were investigated, For the mixture of 60% lake sludge and 40% fly ash in this experiment, the calcination regime with a pre-caleination period at about 600℃, a temperature keeping period at 1 200 ℃ and a moderate cooling rate are recommended to prepare haydite with reasonable pore structure and good performances for its usage as the waste water filter media.
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
基金financially supported by the National Natural Science Foundation of China(Nos.51525401,51274054,U1332115,51401044)the Science and Technology Planning Project of Dalian(No.2013A16GX110)+1 种基金the China Postdoctoral Science Foundation(2015M581331)the Fundamental Research Funds for the Central Universities
文摘A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs.
基金supported by the National Natural Science Foundation of China(Grant nos.41772108 and 41472121)
文摘To understand the influence of the diagenetic water medium on the isotopic compositions of thermogenic coalbed gas, both hydrous and anhydrous closed-system pyrolyses were performed at temperatures of 250°C to 650°C on an herbaceous marsh peat. Compared to the results of anhydrous pyrolysis, the hydrocarbon gases generated from hydrous pyrolyses have very different hydrogen isotopic compositions. However, the carbon isotopic compositions of the hydrocarbon gases became only slightly heavier in hydrous pyrolysis, compared to that from anhydrous pyrolysis. With the progress of thermal evolution from peat to a more advanced thermal maturity of vitrinite reflectance values(Ro) of 5.5% during the pyrolysis, the difference in the average δD value increased from 52‰ to 64‰ between the hydrous pyrolysis with saltwater and anhydrous pyrolysis and increased from 18‰ to 29‰ between the hydrous pyrolysis with freshwater and anhydrous pyrolysis, respectively. The difference in the average δ^(13)C value was only 1‰–2‰ between the hydrous and anhydrous pyrolysis. The relationships between the δD values of the generated hydrocarbon gases and Ro values as well as among δD values of the hydrocarbon gas species are established. The close relationships among these parameters suggest that the water medium had a significant effect on the hydrogen isotopic composition and a minimal effect on the carbon isotopic composition of the hydrocarbon gases. The results of these pyrolyses may provide information for the understanding of the genesis of coalbed gas from herbaceous marsh material with the participation of different diagenetic water media.
文摘This paper examines the two-phase flow for a horizontal well penetrating a naturally fractured reservoir with edge water injection by means of a fixed streamlinemodel,The mathematical model of the verical two-dimensional flow or oil-water for a horizontal well in a medium with double-porosity is established ,and whose accuratesolutions are obtained by using the characteristic method .The saturation distributionsin the fractured system and the matrix system as well as the formula of the time of water free production are presented .All these results provide a theoretical basis and a computing method for oil displacement by edge water from naturally fracturedreservirs.
文摘The penetration of water during water flooding has been observed over many years using several methods. A microfocused X-ray computed tomography scanner can be used to directly observe 3D water flooding in a nondestructive manner. To eliminate the possibility of false images being produced because of X-ray broadening effects, we developed a visualization method by arranging the brightness distribution of all phases involved. Water flooding experiments were conducted using oil-wet and water-wet porous media. The water phase was injected upward into packed glass beads containing an oil phase, and the process was scanned every minute until steady state was reached. Using this scheme, real-time, the water invasion pattern and oil trapping process in clusters of pores and individual pores can be observed clearly. By eliminating false images, the boundary of each phase could be identified with high precision, even in a single pore. Porelevel phenomena, including snap off (which has never before been captured in a real 3D porous medium), piston-like displacement, and the curvature of the interface, were also observed. Direct measurement of the pore throat radius and the contact angle between the wetting and nonwetting phases gave an approximation of the capillary pressure during the piston-like displacement and snap-off processes.
文摘The most secure method in providing water in the dry and semi-dry regions is the use of underground water sources and due to over consumption of water aquifers capacities, most of fields and specially Imamzadeh Jafar are faced with negative performance and balance, which threatens the land subsiding. The plateau with the annual raining of 438 millimeters has 169 deep and semi-deep wells with annual 36.68 million consumption and this issue has increased the research signification, in order to protect and relive the required water aquifers, there is a need to predict the underground water level accurately in different condition. In this research, by the use of balance equation and modflow software in Imamzadeh Jafar, water aquifer was analyzed within seven scenario. The underground water level evaluation for the short run periods for 2 years and middle term of 4 years and 12 years of long term was performed;and the results showed that the performance and balance of the plateau was increased due to increase of water consumption compared to the water aquifer quantity in the region that was negative. To the point that the 1, 3, 4, 5, 7 scenarios (minimum 0.17 and maximum -11.34) and 2, 6 scenarios in different timely periods show that the underground water saving volume is positive (minimum 3.64 and maximum 19.83).
基金conducted as a joint research projectfinanced by SRTTU(Iran)UPM(Malaysia)
文摘We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,50,100,and 150 g kg-1dry wood fibers.Density of all treatments was kept constant at 0.67 g cm-3.The water-repellent property of organo-silane significantly reduced water absorption(WA) and thickness swelling but mechanical properties declined due to the reduced proportion of wood-fiber as organo-silane was added to the matrix:the compression ratio of MDF panels and the integrity among wood-fibers both declined,resulting in reduced mechanical properties.We recommend use of 50 g of NOS/kg wood-fiber to improve WA and thickness swelling while retaining acceptable mechanical properties.