[Objectives]To investigate the use of the classical Chinese medicine formula Sihu Powder modified decoction for postoperative fumigation and sitz bath in patients with perianal abscess,aiming to promote wound healing ...[Objectives]To investigate the use of the classical Chinese medicine formula Sihu Powder modified decoction for postoperative fumigation and sitz bath in patients with perianal abscess,aiming to promote wound healing and reduce medical burden.[Methods]An observational cohort study was conducted,selecting 200 patients with perianal abscess who underwent surgery in Shenzhen Guangming District People's Hospital.They were randomly divided into a treatment group and an observation group,with 100 cases in each group.Both groups followed the same surgical and antibiotic treatment principles.Starting from the first postoperative day,the treatment group received fumigation and sitz bath with modified Sihu Powder for decoction twice daily;the observation group used Compound Huangbai Liquid for fumigation and sitz bath twice daily.Indicators including pain score,wound secretion score,wound granulation tissue growth score,multidrug-resistant bacterial infection clearance rate,antibiotic usage days,and wound healing rate were observed in both groups 7,14 and 21 d after operation.[Results]On postoperative day 7,the differences in postoperative pain score,wound secretions,and multidrug-resistant bacterial clearance rate between the treatment group and the observation group were statistically significant.On postoperative day 14,the differences between the two groups were significant in indicators including pain score,wound secretions,wound granulation tissue growth,multidrug-resistant bacterial clearance rate,and wound healing rate.On postoperative day 21,the difference in wound healing rate between the two groups was significant;furthermore,the antibiotic usage days in the treatment group were significantly fewer than those in the observation group.[Conclusions]Modified Sihu Powder for fumigation and washing can effectively alleviate postoperative pain in perianal abscess patients,inhibit the colonization and infection of multidrug-resistant bacteria at the wound site,accelerate wound healing,reduce antibiotic usage intensity and medical burden.It possesses advantages such as being economical,effective,safe,and easy to operate,making it worthy of clinical promotion.展开更多
The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the phy...The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the physicochemical properties of ethylene diamine tetraacetic acid(EDTA)solutions for the removal of lead(Pb)and cadmium(Cd)from a contaminated clayey soil.Furthermore,EDTA concentration,magnetization strength,and magnetization time were varied as parameters for enhancing the contact between contaminant and washing solution to improve remediation efficiency.The results showed that after magnetization,the viscosities,surface tensions,and contact angles of EDTA solutions decreased,whereas the electrical conductivity and pH increased.In particular,the viscosities of high-concentration EDTA solutions increased with increasing magnetic field strength and magnetization time.The magnetized EDTA solutions increased the maximum removal rates of Cd and Pb by 64.46% and 35.49%,respectively,compared to the unmagnetized EDTA solutions.The results highlighted the efficient metal removal by magnetized washing solutions due to the better contact between the washing solutions and the contaminants.The magnetic-enhanced soil washing method was proven to be efficient,cost-effective,and easily implementable for enhancing heavy metal removal.This study provides a valuable reference for improving the efficiency of chemical washing for heavy metal-contaminated clayey soils.展开更多
Red mud(RM) is an industrial solid waste produced during the extraction of alumina from bauxite.The strong alkaline and heavy metal leaching issues are the primary factors limiting its utilization.This paper proposes ...Red mud(RM) is an industrial solid waste produced during the extraction of alumina from bauxite.The strong alkaline and heavy metal leaching issues are the primary factors limiting its utilization.This paper proposes a method for dealkalization and chromium(Cr) removal by repeated freeze and thaw to enhance the comprehensive utilization rate of RM.This study focused on the Bayer RM and investigated the effects of freeze-thaw(FT)-acid washing(AW) for dealkalization and Cr removal.The variables were the eluent concentration and FT cycles.The results showed that the synergistic action of FT-AW significantly improved the efficiency of dealkalization and Cr removal.After five FT cycles with 0.5 mol/L oxalic acid,the dealkalization and Cr removal rates reached 97.5% and 65.38%,respectively,16.1% and 7.40% higher than those achieved at room temperature.The repeated FT disrupted the structure of the RM particles,leading to an increase in the pore space between the soil particles.This enables complete eluent contact and reaction with Cr and alkali,thereby enhancing the removal rate.The FT-AW process is suitable for practical engineering applications.It offers a novel method for RM dealkalization and Cr removal by using the FT alternation phenomena in seasonally frozen regions.展开更多
Herein,a new method was developed for efficient and lasting fluorescent whitening cotton fabric by synthesizing and using a vinyl-containing fluorescent whitening agent to covalently grafting onto fiber surfaces with ...Herein,a new method was developed for efficient and lasting fluorescent whitening cotton fabric by synthesizing and using a vinyl-containing fluorescent whitening agent to covalently grafting onto fiber surfaces with the assistance of electron beam irradiation.The results from FT-IR spectroscopic,X-ray photoelectron spectroscopic,and energy dispersive spectrometric analyses showed that the fluorescent whitening agent was successfully anchored on cotton fiber via radiation-induced grafting copolymerization.The optimized whiteness value at 110.81(that of raw cotton fabric,74.50)was achieved using just 0.3 wt% fluorescent whitening agent.Notably,the whiteness value of the treated cotton fabric remained 110+even after 100 equivalent home-washing cycles,substantiating its excellent washing durability.Skin stimulation experiments on rabbits showed that the primary stimulation index of all experimental groups was 0 and no abnormal clinical symptoms were found in all tested rabbits,demonstrating the outstanding skin safety.Furthermore,energy generated by irradiation grafting technology was much lower than that of traditional processes and water consumption greatly reduced.Even the effluent from this process completely met the discharge standard of industrial wastewater without any treatment.This study explores a new method for textile finishing via electron beam irradiation,providing a green and sustainable perspective for the textile industry.展开更多
The coupling of washing with adsorption process can be adopted for the treatment of soils contaminated with heavy metals pollution.However,the complex environment of soil and the competitive behavior of leaching chemi...The coupling of washing with adsorption process can be adopted for the treatment of soils contaminated with heavy metals pollution.However,the complex environment of soil and the competitive behavior of leaching chemicals considerably restrain adsorption capacity of adsorbent material during washing process,which demands a higher resistance of the adsorbents to interference.In this study,we synthesized strongly magnetic,high specific surface area(573.49 m^(2)/g)UiO66 composites(i.e.,UiO66-Fe_(3)O_(4))using hydrothermal process.The UiO66-Fe_(3)O_(4) was applied as an adsorbent during the ethylene diamine tetraacetic acid(EDTA)-assisted washing process of contaminated soil.The incorporation of UiO66-Fe_(3)O_(4)results in rapid heavy metal removal and recovery from the soil under low concentrations of washing agent(0.001 mol/L)with reduced residual heavy metal mobility of soil after remediation.Furthermore,UiO66-Fe_(3)O_(4)can quickly recollect by an external magnet,which offers a simple and inexpensive recovery method for heavy metals from contaminated soil.Overall,UiO66-Fe_(3)O_(4)configuration with EDTA-assisted washing process showed opportunities for heavy metals contaminated sites.展开更多
Greenwashing behaviors(GWBs)in green finance products(GFPs)by enterprises seriously hinder the realization of environmental protection goals.However,methods for effectively regulating GWBs in GFPs are unclear.This stu...Greenwashing behaviors(GWBs)in green finance products(GFPs)by enterprises seriously hinder the realization of environmental protection goals.However,methods for effectively regulating GWBs in GFPs are unclear.This study constructed a tripartite evolutionary game model to analyze the formation and governance mechanisms of GWBs in GFPs among regulatory authorities,enterprises,and investors.Subsequently,the stability equilibrium strategy and key factors influencing the system equilibrium were discussed.Several interesting conclusions were drawn.First,we demonstrated that an interdependence mechanism exists among three game agents who mutually influence each other.The larger the probability of regulatory authorities choosing active supervision and investors adopting feedback,the more enterprises are willing to carry out green projects.Second,three corresponding governance modes for GWBs were put forward following the developmental stages of GFPs.Among these,the collaboration mode is the most effective in incentivizing enterprises to implement green projects.Third,based on sensitivity simulations,the initial willingness of the tripartite stakeholders,investor feedback cost,investor compensation,the penalty for greenwashing enterprises,and the reputational benefit of enterprises are critical factors that influence evolutionary results.Finally,targeted countermeasures were provided for regulatory authorities to prevent enterprises from engaging in GWBs.展开更多
This review focuses on the current situation of sustainable development of denim industry and analyzes the water consumption in the production process of denim.In the washing process of jeans,the dry treatment or near...This review focuses on the current situation of sustainable development of denim industry and analyzes the water consumption in the production process of denim.In the washing process of jeans,the dry treatment or near-anhydrous treatment is becoming a sustainable trend to replace the traditional wet treatment.From the perspective of environmental protection,this review summarizes the recent research frontiers of water-saving technologies such as recycling and utilization of printing and dyeing wastewater,foam finishing technology,ozone washing technology and laser washing technology in denim industry.With the upgrading of textile industry and the implementation of national environmental protection laws and regulations,technologies such as foam finishing,ozone washing and laser engraving have been well-developed in the field of denim garment washing processing.In the future,the denim industry will be revolutionized by the water-free manufacturing.展开更多
Coal Washing Exploration in India dates back to 1900s; though, first coking coal washeries in India were installed after independence. At present, most of the coking coal washeries are owned by Public Sector Companies...Coal Washing Exploration in India dates back to 1900s; though, first coking coal washeries in India were installed after independence. At present, most of the coking coal washeries are owned by Public Sector Companies; whereas, most of the non-coking coal washeries are owned by Private Sector. Even after six decades of coal washing practices, there has not been significant development in the coal washing intelligentsia. Indian Coal Washing industry is still dependent on imported equipment, which has been designed to treat coal that is significantly different from Indian coal of drift origin. In this paper, authors have ventured into evolution of Indian Coal Washing Industry (with a focus on coking coal washing sector), its present condition and future prospect for growth. The paper emphasizes need for developing indigenous solutions to industrial challenges and highlights importance of increased coordination among academia-research institutions and coal industry.展开更多
Ex-situ soil washing technology offers advantages such as speed and efficiency of remediation and range of application and has been developed to conform with legal requirements and best management practices in USA and...Ex-situ soil washing technology offers advantages such as speed and efficiency of remediation and range of application and has been developed to conform with legal requirements and best management practices in USA and some European countries. In this study, nano-sulfonated graphene (SGE) was used as a washing agent to evaluate different processing (washing) parameters for the ectopic leaching removal of polycyclic aromatic hydrocarbons (PAHs) from a coking plant soil. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectroscopy (FTIR) were used to analyze the characteristics of the SGE tested. The results showed that SGE had a strong adsorption capacity for PAHs through the role of π-π, H-π, and anion-π interactions. The washing parameters, an SGE concentration of 2000 mg L-1, a liquid/soil (L/S) ratio of 10:1, and 4 cycles of successive washing, were set to arrive to the optimum condition for achieving more than 80% of PAH removal. Under the optimum condition, the PAH removal rate decreased with increasing ring numbers. After one washing cycle at SGE concentration of 2000 mg L-1 and L/S ratio of 10:1, the PAH removal rate of the SCE tested was much higher than that of Tween 80 (TW80) or methyl-β-cyclodextrin (MCD) (P 〈 0.01). Therefore, SGE is a promising material for the nanoremediation of PAH-contaminated soils.展开更多
The effect of successive washing instead of traditional intermittent washing on the porous structure of pseudoboehmite was investigated by mercury porosimetry, N2 adsorption and thermal analysis, while the stabilities...The effect of successive washing instead of traditional intermittent washing on the porous structure of pseudoboehmite was investigated by mercury porosimetry, N2 adsorption and thermal analysis, while the stabilities of different types of crystals were investigated by X-ray diffractometer. Experimental results show that successive washing is a continuation of the aging process of intermittent washing. After a successive washing, the pore types showed no difference with the intermittent washing. During successive washing, the characteristics of the pores in the range of 2-15 nm changed only very little. However, the distributions of the pore radius for pores of 20-50 and 300-1000 nm were obviously influenced. It was shown that the volume of larger pores decreased only to a smaller extent after the successive washing, as compared with that of the intermittent washing, and the pore size was affected by the condition of the successive washing. The roles of physisorbed water, intermicellar liquid, weakly bonded water, as well as the role of stirring, have been discussed.展开更多
the quality of life seriously,and even lead to more servere complications.On the base of the well-controlled blood glucose,improving the symptoms of both lower limbs timely will has positive significance for enhancing...the quality of life seriously,and even lead to more servere complications.On the base of the well-controlled blood glucose,improving the symptoms of both lower limbs timely will has positive significance for enhancing the life quality of patients and preventing complications of limbs.This article makes a comprehensive study on the application of self-made water-washing footbath in the treatment of DPN by Chinese medicine fumigation.From March 2018 to April 2018 in our hospital 20 cases of DPN patients were collected and they were divided into observation group(treated by self-made water-washing footbath with herbs)and control group(treated by conventional barrels),10 cases in each.The results showed that Chinese medicine fumigation on both lower limbs has clinical curative effect to improve the symptoms of arthromyodynia caused by diabetes.It provide an alternative method of external treatment for DPN patients with numbness in both lower limbs which could alleviate their suffering and improve the quality of life significantly.展开更多
Under the background of the gradual progress of urbanization, the importance of urban rail transit has become increasingly prominent. The rapid development of social, economic and scientific technology has created fav...Under the background of the gradual progress of urbanization, the importance of urban rail transit has become increasingly prominent. The rapid development of social, economic and scientific technology has created favorable conditions for the improvement of the technical level of urban rail transit. The improvement of the technical level of urban rail transit has also made it more convenient for urban residents to travel and provided better services for residents. The application of driverless technology aims to explore reasonable solutions to reduce maintenance costs and improve operation efficiency. Based on the scene of full-automatic operation of urban rail transit, this paper explores the car washing scheme of full-automatic running trains and puts forward the solution, which provides a reference for the design of signal system and car washing system.展开更多
Polycyclic aromatic hydrocarbons(PAHs)/heavy metals/fluorine(F) mixed-contaminated sites caused by abandoned metallurgic plants are receiving wide attention. To address the associated environmental problems,this s...Polycyclic aromatic hydrocarbons(PAHs)/heavy metals/fluorine(F) mixed-contaminated sites caused by abandoned metallurgic plants are receiving wide attention. To address the associated environmental problems,this study was initiated to investigate the feasibility of using carboxymethyl-β-cyclodextrin(CMCD) and carboxymethyl chitosan(CMC) solution to enhance ex situ soil washing for extracting mixed contaminants. Further,Tenax extraction method was combined with a first-three-compartment model to evaluate the environmental risk of residual PAHs in washed soil. In addition,the redistribution of heavy metals/F after decontamination was also estimated using a sequential extraction procedure. Three successive washing cycles using50 g/L CMCD and 5 g/L CMC solution were effective to remove 94.3% of total PAHs,93.2% of Pb,85.8% of Cd,93.4% of Cr,83.2% of Ni and 97.3% of F simultaneously. After the 3rd washing,the residual PAHs mainly existed as very slowly desorbing fractions,which were in the form of well-aged,well-sequestered compounds; while the remaining Pb,Cd,Cr,Ni and F mainly existed as Fe–Mn oxide and residual fractions,which were always present in stable mineral forms or bound to non-labile soil fractions. Therefore,this combined cleanup strategy proved to be effective and environmentally friendly.展开更多
This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of...This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(Ⅴ) with Fe(Ⅲ) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the PT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing agent for removing As even from soil with high Fe content.展开更多
Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure...Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure and properties of the glass-ceramics was examined. The results show that washing pretreatment of fly ash can decrease alkali metal chloride and increase network former in fly ash, which results in the increase of peak crystallization temperature of parent glass and strengthening of properties of bending strength and chemical stability of the glass-ceramics. The optimal heat treatment temperature for parent glass of washed fly ash is 1 173 K, at which the crystalline phase of glass-ceramics is composed of gelignite (Ca2A12SiO7) and akermanite (Ca2MgSi207). Glass-ceramics produced at optimal heat treatment temperature are excellent in term of the physical and chemical properties and leaching characteristics, indicating attractive potential as substitute of nature materials.展开更多
Different LiNi0.8Co0.15Al0.05O2 cathode materials were washed by ethanol solvent. Inductively coupled plasma atomic emission spectroscopy(ICP-AES), Fourier transformed infrared(FTIR) spectrum, X-ray diffraction(...Different LiNi0.8Co0.15Al0.05O2 cathode materials were washed by ethanol solvent. Inductively coupled plasma atomic emission spectroscopy(ICP-AES), Fourier transformed infrared(FTIR) spectrum, X-ray diffraction(XRD), scanning electron microscopy(SEM), charge-discharge test and electrochemical impedance spectroscopy(EIS) were used to evaluate the elemental contents, structures, morphologies and electrochemical properties of samples. The results show that ethanol washing can remove effectively the synthetic residues LiOH/Li2 O on the freshly-prepared LiNi0.8Co0.15Al0.05O2 and make the sample much more resistant to H2O and CO2, without destroying its bulk structure, surface morphology and electrochemical performances. Moreover, the discharge specific capacity and cycle performance of LiNi0.8Co0.15Al0.05O2 after storage in air with a relative humidity of 80% for three months are improved by immediate ethanol washing.展开更多
CO2 removal from biogas by water washing system was investigated with various parameters, including liquid/ gas ratio, pressure, temperature, and CO2 content. The results indicate that CO2 removal ratio could reach 34...CO2 removal from biogas by water washing system was investigated with various parameters, including liquid/ gas ratio, pressure, temperature, and CO2 content. The results indicate that CO2 removal ratio could reach 34.6%- 94.2% as liquid/gas ratio increased from 0.14 to 0.50. Increasing pressure (from 0.8 to 1.2 MPa) could improve gas purification with a constant inflow rate of gas. Temperature played a key role in the process and lower temper- ature in absorption tower was beneficial for reducing CO2 content. CO2 removal ratio could reach 24.4%-83.2% when CO2 content in the simulated gas was 25%-45%. The lowest CO2 content after absorption was 2.6% at 1.2 MPa with 400 L·h-1 gas flow and 200 L·h-1 water flow, which meets the requirement of CO2 content in natural Ras for vehicle fuel.展开更多
Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing.Leaching of ...Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing.Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order:〈 0.1,2–0.1,and 〉 2 mm.With increased contact time,the concentration of heavy metals in the leachate was significantly decreased for small particles,probably because of adsorption by the clay soil component.For the different particle sizes,the removal efficiencies for Pb and Cd were75%–87%,and 61%–77% for Zn and Cu,although the extent of removal was decreased for As and Cr at 〈 45%.The highest efficiency by washing for Pb,Cd,Zn,and As was from the soil particles 〉 2 mm,although good metal removal efficiencies were also achieved in the small particle size fractions.Through SEM-EDS observations and correlation analysis,the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe,Mn,and Ca contents of the soil fractions.The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient,and practical remediation parameters were also recommended.展开更多
The prediction of Exhaust Gas Temperature Margin(EGTM)after washing aeroengines can provide a theoretical basis for airlines not only to evaluate the energy-saving effect and emission reduction,but also to formulate r...The prediction of Exhaust Gas Temperature Margin(EGTM)after washing aeroengines can provide a theoretical basis for airlines not only to evaluate the energy-saving effect and emission reduction,but also to formulate reasonable maintenance plans.However,the EGTM encounters step changes after washing aeroengines,while,in the traditional models,a persistence tendency exists between the prediction results and the previous data,resulting in low accuracy in prediction.In order to solve the problem,this paper develops a step parameters prediction model based on Transfer Process Neural Networks(TPNN).Especially,“step parameters”represent the parameters that can reflect EGTM step changes.They are analyzed in this study,and thus the model concentrates on the prediction of step changes rather than the extension of data trends.Transfer learning is used to handle the problem that few cleaning records result in few step changes for model learning.In comparison with Long Short-Term Memory(LSTM)and Kernel Extreme Learning Machine(KELM)models,the effectiveness of the proposed method is verified on CFM56-5B engine data.展开更多
Soil washing, ex situ mechanical technique, is one of the few permanent treatment alternatives to remove metal contaminants from soils by employing physical separation based on mineral processing technologies to remov...Soil washing, ex situ mechanical technique, is one of the few permanent treatment alternatives to remove metal contaminants from soils by employing physical separation based on mineral processing technologies to remove discrete particles or metal-bearing particles and/or chemical extraction based on leaching or dissolving process to extract the metals from the soils into an aqueous solution. However, washwater remained from soil washing process contains discrete particulate particles along with heavy metals as solution phase to be treated separately, as well as this process can produce large amount of sludge that requires further treatment, slow metal precipitation, poor settling, the aggregation of metal precipitates. Electrical treatments including electrocoagulation and electrolysis can be effective in removing these substances from washwater. This paper reviews the theoretical models in applying electrocoagulation and electrolysis to remove heavy metals and discrete particulate particles in washwater by examining and comparing the status of washwater treatment technologies which have been undertaken, mostly in the US and EU for the period 1990-2012.展开更多
基金Supported by Shenzhen Guangming District Health System Scientific Research Project(2020R01120).
文摘[Objectives]To investigate the use of the classical Chinese medicine formula Sihu Powder modified decoction for postoperative fumigation and sitz bath in patients with perianal abscess,aiming to promote wound healing and reduce medical burden.[Methods]An observational cohort study was conducted,selecting 200 patients with perianal abscess who underwent surgery in Shenzhen Guangming District People's Hospital.They were randomly divided into a treatment group and an observation group,with 100 cases in each group.Both groups followed the same surgical and antibiotic treatment principles.Starting from the first postoperative day,the treatment group received fumigation and sitz bath with modified Sihu Powder for decoction twice daily;the observation group used Compound Huangbai Liquid for fumigation and sitz bath twice daily.Indicators including pain score,wound secretion score,wound granulation tissue growth score,multidrug-resistant bacterial infection clearance rate,antibiotic usage days,and wound healing rate were observed in both groups 7,14 and 21 d after operation.[Results]On postoperative day 7,the differences in postoperative pain score,wound secretions,and multidrug-resistant bacterial clearance rate between the treatment group and the observation group were statistically significant.On postoperative day 14,the differences between the two groups were significant in indicators including pain score,wound secretions,wound granulation tissue growth,multidrug-resistant bacterial clearance rate,and wound healing rate.On postoperative day 21,the difference in wound healing rate between the two groups was significant;furthermore,the antibiotic usage days in the treatment group were significantly fewer than those in the observation group.[Conclusions]Modified Sihu Powder for fumigation and washing can effectively alleviate postoperative pain in perianal abscess patients,inhibit the colonization and infection of multidrug-resistant bacteria at the wound site,accelerate wound healing,reduce antibiotic usage intensity and medical burden.It possesses advantages such as being economical,effective,safe,and easy to operate,making it worthy of clinical promotion.
基金the financial support from the National Natural Science Foundation of China(Nos.42471155,U2004181,and 41371092)partially supported by the Natural Science Foundation of Heilongjiang Province,China(No.LH2024D025)+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China(No.SKLFSE201917)the Key Scientific and Technological Project of Henan Province,China(No.192102310503)the National Key Scientific and Technological Project of Henan Province Office of Education,China(No.14B170007)。
文摘The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the physicochemical properties of ethylene diamine tetraacetic acid(EDTA)solutions for the removal of lead(Pb)and cadmium(Cd)from a contaminated clayey soil.Furthermore,EDTA concentration,magnetization strength,and magnetization time were varied as parameters for enhancing the contact between contaminant and washing solution to improve remediation efficiency.The results showed that after magnetization,the viscosities,surface tensions,and contact angles of EDTA solutions decreased,whereas the electrical conductivity and pH increased.In particular,the viscosities of high-concentration EDTA solutions increased with increasing magnetic field strength and magnetization time.The magnetized EDTA solutions increased the maximum removal rates of Cd and Pb by 64.46% and 35.49%,respectively,compared to the unmagnetized EDTA solutions.The results highlighted the efficient metal removal by magnetized washing solutions due to the better contact between the washing solutions and the contaminants.The magnetic-enhanced soil washing method was proven to be efficient,cost-effective,and easily implementable for enhancing heavy metal removal.This study provides a valuable reference for improving the efficiency of chemical washing for heavy metal-contaminated clayey soils.
基金supported by the National Natural Science Foundation of China (No. U2004181)State Key Laboratory of Frozen Soil Engineering (No. SKLFSE20191702)+2 种基金the key scientific and technological project of Henan Province (222102320226)Basic research expenses of Henan Polytechnic University (NSFRF230424)the Natural Science Foundation of Henan Province (242300421650)。
文摘Red mud(RM) is an industrial solid waste produced during the extraction of alumina from bauxite.The strong alkaline and heavy metal leaching issues are the primary factors limiting its utilization.This paper proposes a method for dealkalization and chromium(Cr) removal by repeated freeze and thaw to enhance the comprehensive utilization rate of RM.This study focused on the Bayer RM and investigated the effects of freeze-thaw(FT)-acid washing(AW) for dealkalization and Cr removal.The variables were the eluent concentration and FT cycles.The results showed that the synergistic action of FT-AW significantly improved the efficiency of dealkalization and Cr removal.After five FT cycles with 0.5 mol/L oxalic acid,the dealkalization and Cr removal rates reached 97.5% and 65.38%,respectively,16.1% and 7.40% higher than those achieved at room temperature.The repeated FT disrupted the structure of the RM particles,leading to an increase in the pore space between the soil particles.This enables complete eluent contact and reaction with Cr and alkali,thereby enhancing the removal rate.The FT-AW process is suitable for practical engineering applications.It offers a novel method for RM dealkalization and Cr removal by using the FT alternation phenomena in seasonally frozen regions.
基金supported by the National Natural Science Foundation of China(Nos.12075153 and 11875313)CNNC Key Laboratory on Uranium Extraction from Seawater(No.KLUES202205).
文摘Herein,a new method was developed for efficient and lasting fluorescent whitening cotton fabric by synthesizing and using a vinyl-containing fluorescent whitening agent to covalently grafting onto fiber surfaces with the assistance of electron beam irradiation.The results from FT-IR spectroscopic,X-ray photoelectron spectroscopic,and energy dispersive spectrometric analyses showed that the fluorescent whitening agent was successfully anchored on cotton fiber via radiation-induced grafting copolymerization.The optimized whiteness value at 110.81(that of raw cotton fabric,74.50)was achieved using just 0.3 wt% fluorescent whitening agent.Notably,the whiteness value of the treated cotton fabric remained 110+even after 100 equivalent home-washing cycles,substantiating its excellent washing durability.Skin stimulation experiments on rabbits showed that the primary stimulation index of all experimental groups was 0 and no abnormal clinical symptoms were found in all tested rabbits,demonstrating the outstanding skin safety.Furthermore,energy generated by irradiation grafting technology was much lower than that of traditional processes and water consumption greatly reduced.Even the effluent from this process completely met the discharge standard of industrial wastewater without any treatment.This study explores a new method for textile finishing via electron beam irradiation,providing a green and sustainable perspective for the textile industry.
基金supported by the University Basic Research Fund of China(No.2232020A-10)the Joint Foundation of Iron and Steel,National Natural Science Foundation of China(No.U1660107)。
文摘The coupling of washing with adsorption process can be adopted for the treatment of soils contaminated with heavy metals pollution.However,the complex environment of soil and the competitive behavior of leaching chemicals considerably restrain adsorption capacity of adsorbent material during washing process,which demands a higher resistance of the adsorbents to interference.In this study,we synthesized strongly magnetic,high specific surface area(573.49 m^(2)/g)UiO66 composites(i.e.,UiO66-Fe_(3)O_(4))using hydrothermal process.The UiO66-Fe_(3)O_(4) was applied as an adsorbent during the ethylene diamine tetraacetic acid(EDTA)-assisted washing process of contaminated soil.The incorporation of UiO66-Fe_(3)O_(4)results in rapid heavy metal removal and recovery from the soil under low concentrations of washing agent(0.001 mol/L)with reduced residual heavy metal mobility of soil after remediation.Furthermore,UiO66-Fe_(3)O_(4)can quickly recollect by an external magnet,which offers a simple and inexpensive recovery method for heavy metals from contaminated soil.Overall,UiO66-Fe_(3)O_(4)configuration with EDTA-assisted washing process showed opportunities for heavy metals contaminated sites.
基金Supports from the National Natural Science Foundation of China under Grant Nos.72348003,72022020 and 71974181the National Social Science Foundation of China under Grant No.20BJL058 are acknowledged.
文摘Greenwashing behaviors(GWBs)in green finance products(GFPs)by enterprises seriously hinder the realization of environmental protection goals.However,methods for effectively regulating GWBs in GFPs are unclear.This study constructed a tripartite evolutionary game model to analyze the formation and governance mechanisms of GWBs in GFPs among regulatory authorities,enterprises,and investors.Subsequently,the stability equilibrium strategy and key factors influencing the system equilibrium were discussed.Several interesting conclusions were drawn.First,we demonstrated that an interdependence mechanism exists among three game agents who mutually influence each other.The larger the probability of regulatory authorities choosing active supervision and investors adopting feedback,the more enterprises are willing to carry out green projects.Second,three corresponding governance modes for GWBs were put forward following the developmental stages of GFPs.Among these,the collaboration mode is the most effective in incentivizing enterprises to implement green projects.Third,based on sensitivity simulations,the initial willingness of the tripartite stakeholders,investor feedback cost,investor compensation,the penalty for greenwashing enterprises,and the reputational benefit of enterprises are critical factors that influence evolutionary results.Finally,targeted countermeasures were provided for regulatory authorities to prevent enterprises from engaging in GWBs.
文摘This review focuses on the current situation of sustainable development of denim industry and analyzes the water consumption in the production process of denim.In the washing process of jeans,the dry treatment or near-anhydrous treatment is becoming a sustainable trend to replace the traditional wet treatment.From the perspective of environmental protection,this review summarizes the recent research frontiers of water-saving technologies such as recycling and utilization of printing and dyeing wastewater,foam finishing technology,ozone washing technology and laser washing technology in denim industry.With the upgrading of textile industry and the implementation of national environmental protection laws and regulations,technologies such as foam finishing,ozone washing and laser engraving have been well-developed in the field of denim garment washing processing.In the future,the denim industry will be revolutionized by the water-free manufacturing.
文摘Coal Washing Exploration in India dates back to 1900s; though, first coking coal washeries in India were installed after independence. At present, most of the coking coal washeries are owned by Public Sector Companies; whereas, most of the non-coking coal washeries are owned by Private Sector. Even after six decades of coal washing practices, there has not been significant development in the coal washing intelligentsia. Indian Coal Washing industry is still dependent on imported equipment, which has been designed to treat coal that is significantly different from Indian coal of drift origin. In this paper, authors have ventured into evolution of Indian Coal Washing Industry (with a focus on coking coal washing sector), its present condition and future prospect for growth. The paper emphasizes need for developing indigenous solutions to industrial challenges and highlights importance of increased coordination among academia-research institutions and coal industry.
基金supported by the Distinguished Young Scholar Programe of Jiangsu Province of China (No. BK20150049)the National Natural Science Foundation of China (No. 41401565)
文摘Ex-situ soil washing technology offers advantages such as speed and efficiency of remediation and range of application and has been developed to conform with legal requirements and best management practices in USA and some European countries. In this study, nano-sulfonated graphene (SGE) was used as a washing agent to evaluate different processing (washing) parameters for the ectopic leaching removal of polycyclic aromatic hydrocarbons (PAHs) from a coking plant soil. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectroscopy (FTIR) were used to analyze the characteristics of the SGE tested. The results showed that SGE had a strong adsorption capacity for PAHs through the role of π-π, H-π, and anion-π interactions. The washing parameters, an SGE concentration of 2000 mg L-1, a liquid/soil (L/S) ratio of 10:1, and 4 cycles of successive washing, were set to arrive to the optimum condition for achieving more than 80% of PAH removal. Under the optimum condition, the PAH removal rate decreased with increasing ring numbers. After one washing cycle at SGE concentration of 2000 mg L-1 and L/S ratio of 10:1, the PAH removal rate of the SCE tested was much higher than that of Tween 80 (TW80) or methyl-β-cyclodextrin (MCD) (P 〈 0.01). Therefore, SGE is a promising material for the nanoremediation of PAH-contaminated soils.
文摘The effect of successive washing instead of traditional intermittent washing on the porous structure of pseudoboehmite was investigated by mercury porosimetry, N2 adsorption and thermal analysis, while the stabilities of different types of crystals were investigated by X-ray diffractometer. Experimental results show that successive washing is a continuation of the aging process of intermittent washing. After a successive washing, the pore types showed no difference with the intermittent washing. During successive washing, the characteristics of the pores in the range of 2-15 nm changed only very little. However, the distributions of the pore radius for pores of 20-50 and 300-1000 nm were obviously influenced. It was shown that the volume of larger pores decreased only to a smaller extent after the successive washing, as compared with that of the intermittent washing, and the pore size was affected by the condition of the successive washing. The roles of physisorbed water, intermicellar liquid, weakly bonded water, as well as the role of stirring, have been discussed.
文摘the quality of life seriously,and even lead to more servere complications.On the base of the well-controlled blood glucose,improving the symptoms of both lower limbs timely will has positive significance for enhancing the life quality of patients and preventing complications of limbs.This article makes a comprehensive study on the application of self-made water-washing footbath in the treatment of DPN by Chinese medicine fumigation.From March 2018 to April 2018 in our hospital 20 cases of DPN patients were collected and they were divided into observation group(treated by self-made water-washing footbath with herbs)and control group(treated by conventional barrels),10 cases in each.The results showed that Chinese medicine fumigation on both lower limbs has clinical curative effect to improve the symptoms of arthromyodynia caused by diabetes.It provide an alternative method of external treatment for DPN patients with numbness in both lower limbs which could alleviate their suffering and improve the quality of life significantly.
文摘Under the background of the gradual progress of urbanization, the importance of urban rail transit has become increasingly prominent. The rapid development of social, economic and scientific technology has created favorable conditions for the improvement of the technical level of urban rail transit. The improvement of the technical level of urban rail transit has also made it more convenient for urban residents to travel and provided better services for residents. The application of driverless technology aims to explore reasonable solutions to reduce maintenance costs and improve operation efficiency. Based on the scene of full-automatic operation of urban rail transit, this paper explores the car washing scheme of full-automatic running trains and puts forward the solution, which provides a reference for the design of signal system and car washing system.
基金supported by the National Natural Science Foundation of China (Nos.41030531,41001335G,21377138 and 41271464b)
文摘Polycyclic aromatic hydrocarbons(PAHs)/heavy metals/fluorine(F) mixed-contaminated sites caused by abandoned metallurgic plants are receiving wide attention. To address the associated environmental problems,this study was initiated to investigate the feasibility of using carboxymethyl-β-cyclodextrin(CMCD) and carboxymethyl chitosan(CMC) solution to enhance ex situ soil washing for extracting mixed contaminants. Further,Tenax extraction method was combined with a first-three-compartment model to evaluate the environmental risk of residual PAHs in washed soil. In addition,the redistribution of heavy metals/F after decontamination was also estimated using a sequential extraction procedure. Three successive washing cycles using50 g/L CMCD and 5 g/L CMC solution were effective to remove 94.3% of total PAHs,93.2% of Pb,85.8% of Cd,93.4% of Cr,83.2% of Ni and 97.3% of F simultaneously. After the 3rd washing,the residual PAHs mainly existed as very slowly desorbing fractions,which were in the form of well-aged,well-sequestered compounds; while the remaining Pb,Cd,Cr,Ni and F mainly existed as Fe–Mn oxide and residual fractions,which were always present in stable mineral forms or bound to non-labile soil fractions. Therefore,this combined cleanup strategy proved to be effective and environmentally friendly.
基金funding provided by University of Malaya, Kuala Lumpur (No. PV102-2011A, UM-QUB6A-2011) for carrying out this research
文摘This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(Ⅴ) with Fe(Ⅲ) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the PT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing agent for removing As even from soil with high Fe content.
基金Funded by the National Natural Science Foundation of China(No.20806051)the Key Laboratory of Education Ministry for Solid Waste Management and Environment Safety(No.SWMES-2010-07)the Science and Technology Project of Housing and Urban-Rural Ministry(No.2010-K4-2)
文摘Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure and properties of the glass-ceramics was examined. The results show that washing pretreatment of fly ash can decrease alkali metal chloride and increase network former in fly ash, which results in the increase of peak crystallization temperature of parent glass and strengthening of properties of bending strength and chemical stability of the glass-ceramics. The optimal heat treatment temperature for parent glass of washed fly ash is 1 173 K, at which the crystalline phase of glass-ceramics is composed of gelignite (Ca2A12SiO7) and akermanite (Ca2MgSi207). Glass-ceramics produced at optimal heat treatment temperature are excellent in term of the physical and chemical properties and leaching characteristics, indicating attractive potential as substitute of nature materials.
基金Projects(15B054,17C0400) supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2017JJ2060,2015JJ2042) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2014-207) supported by the Aid Program for Science and Technology Innovative Research Team in Higher Educational Instituions of Hunan Province,China
文摘Different LiNi0.8Co0.15Al0.05O2 cathode materials were washed by ethanol solvent. Inductively coupled plasma atomic emission spectroscopy(ICP-AES), Fourier transformed infrared(FTIR) spectrum, X-ray diffraction(XRD), scanning electron microscopy(SEM), charge-discharge test and electrochemical impedance spectroscopy(EIS) were used to evaluate the elemental contents, structures, morphologies and electrochemical properties of samples. The results show that ethanol washing can remove effectively the synthetic residues LiOH/Li2 O on the freshly-prepared LiNi0.8Co0.15Al0.05O2 and make the sample much more resistant to H2O and CO2, without destroying its bulk structure, surface morphology and electrochemical performances. Moreover, the discharge specific capacity and cycle performance of LiNi0.8Co0.15Al0.05O2 after storage in air with a relative humidity of 80% for three months are improved by immediate ethanol washing.
基金Supported by the National Technology Research and Development Program of China(2008AA062402)the China-US International Cooperation Project(2011DFA90800)the Ministry of Science and Technology,China
文摘CO2 removal from biogas by water washing system was investigated with various parameters, including liquid/ gas ratio, pressure, temperature, and CO2 content. The results indicate that CO2 removal ratio could reach 34.6%- 94.2% as liquid/gas ratio increased from 0.14 to 0.50. Increasing pressure (from 0.8 to 1.2 MPa) could improve gas purification with a constant inflow rate of gas. Temperature played a key role in the process and lower temper- ature in absorption tower was beneficial for reducing CO2 content. CO2 removal ratio could reach 24.4%-83.2% when CO2 content in the simulated gas was 25%-45%. The lowest CO2 content after absorption was 2.6% at 1.2 MPa with 400 L·h-1 gas flow and 200 L·h-1 water flow, which meets the requirement of CO2 content in natural Ras for vehicle fuel.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA06A201)the Science and Technology Project of Beijing(No.Z141100000914011)
文摘Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing.Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order:〈 0.1,2–0.1,and 〉 2 mm.With increased contact time,the concentration of heavy metals in the leachate was significantly decreased for small particles,probably because of adsorption by the clay soil component.For the different particle sizes,the removal efficiencies for Pb and Cd were75%–87%,and 61%–77% for Zn and Cu,although the extent of removal was decreased for As and Cr at 〈 45%.The highest efficiency by washing for Pb,Cd,Zn,and As was from the soil particles 〉 2 mm,although good metal removal efficiencies were also achieved in the small particle size fractions.Through SEM-EDS observations and correlation analysis,the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe,Mn,and Ca contents of the soil fractions.The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient,and practical remediation parameters were also recommended.
基金supported by the National Natural Science Foundation of China(No.1733201)。
文摘The prediction of Exhaust Gas Temperature Margin(EGTM)after washing aeroengines can provide a theoretical basis for airlines not only to evaluate the energy-saving effect and emission reduction,but also to formulate reasonable maintenance plans.However,the EGTM encounters step changes after washing aeroengines,while,in the traditional models,a persistence tendency exists between the prediction results and the previous data,resulting in low accuracy in prediction.In order to solve the problem,this paper develops a step parameters prediction model based on Transfer Process Neural Networks(TPNN).Especially,“step parameters”represent the parameters that can reflect EGTM step changes.They are analyzed in this study,and thus the model concentrates on the prediction of step changes rather than the extension of data trends.Transfer learning is used to handle the problem that few cleaning records result in few step changes for model learning.In comparison with Long Short-Term Memory(LSTM)and Kernel Extreme Learning Machine(KELM)models,the effectiveness of the proposed method is verified on CFM56-5B engine data.
文摘Soil washing, ex situ mechanical technique, is one of the few permanent treatment alternatives to remove metal contaminants from soils by employing physical separation based on mineral processing technologies to remove discrete particles or metal-bearing particles and/or chemical extraction based on leaching or dissolving process to extract the metals from the soils into an aqueous solution. However, washwater remained from soil washing process contains discrete particulate particles along with heavy metals as solution phase to be treated separately, as well as this process can produce large amount of sludge that requires further treatment, slow metal precipitation, poor settling, the aggregation of metal precipitates. Electrical treatments including electrocoagulation and electrolysis can be effective in removing these substances from washwater. This paper reviews the theoretical models in applying electrocoagulation and electrolysis to remove heavy metals and discrete particulate particles in washwater by examining and comparing the status of washwater treatment technologies which have been undertaken, mostly in the US and EU for the period 1990-2012.