Multi-azimuth walkaway vertical seismic profiling is an established technique for the estimation of in situ slowness surfaces and inferring anisotropy parameters.Normally,this technique requires the assumption of late...Multi-azimuth walkaway vertical seismic profiling is an established technique for the estimation of in situ slowness surfaces and inferring anisotropy parameters.Normally,this technique requires the assumption of lateral homogeneity,which makes the horizontal slowness components at depths of downhole receivers equal to those measured at the surface.Any violations of this assumption,such as lateral heterogeneity or nonzero dip of intermediate interfaces,lead to distortions in reconstructed slowness surfaces and,consequently,to errors in estimated anisotropic parameters.In this work,we relax the assumption of lateral homogeneity and discuss how to correct vertical seismic profile data for weak lateral heterogeneity.We describe a procedure of downward continuation of recorded traveltimes that accounts for the presence of both vertical inhomogeneity and weak lateral heterogeneity,which produces correct slowness surfaces at depths of downhole receivers,noticing that sufficiently dense receiver coverage along a borehole is required to separate influences of vertical and lateral heterogeneity on measured traveltimes and obtain accurate estimates of the slowness surfaces.Once the slowness surfaces are found and a desired type of anisotropic model to be inverted is selected,the corresponding anisotropic parameters,providing the best fit to the estimated slownesses,can be obtained.We invert the slowness surfaces of P-waves for parameters of the simplest anisotropic model describing dipping fractures(transversely isotropic medium with a tilted symmetry axis).Five parameters of this model,namely,the P-wave velocity V0 in the direction of the symmetry axis,Thomsen's anisotropic coefficients e and d,the tilt n,and the azimuth b of the symmetry axis,can be estimated in a stable manner when maximum source offset is greater than half of receiver depth.展开更多
In this paper,we image the subsurface reflectors by interferometric imaging using primary and downgoing first-order free-surface related multiple reflections in walkaway VSP data.By analyzing the stack fold distributi...In this paper,we image the subsurface reflectors by interferometric imaging using primary and downgoing first-order free-surface related multiple reflections in walkaway VSP data.By analyzing the stack fold distribution,we find that primary-direct interferometric imaging has a smaller image range,but its stack fold is higher near the well while ghostdirect interferometric imaging is the opposite.We try to solve this problem by the joint interferometric imaging of walkaway VSP data,combining primary-direct interferometric imaging with ghost-direct interferometric imaging.In this way,we can effectively widen the imaging range,simultaneously increase the fold(especially near the well),suppress spurious interference,and improve the image SNR,so that we can get a more credible image.Test results on synthetic walkaway VSP data and field data show that joint interferometric imaging is very effective.展开更多
Estimation of Thomsen's anisotropic parameters is very important for accurate time-to-depth conversion and depth migration data processing. Compared with other methods, it is much easier and more reliable to estim...Estimation of Thomsen's anisotropic parameters is very important for accurate time-to-depth conversion and depth migration data processing. Compared with other methods, it is much easier and more reliable to estimate anisotropic parameters that are required for surface seismic depth imaging from vertical seismic profile(VSP) data, because the first arrivals of VSP data can be picked with much higher accuracy. In this study, we developed a method for estimating Thomsen's P-wave anisotropic parameters in VTI media using the first arrivals from walkaway VSP data. Model first-arrival travel times are calculated on the basis of the near-offset normal moveout correction velocity in VTI media and ray tracing using Thomsen's P-wave velocity approximation. Then, the anisotropic parameters δ and ε are determined by minimizing the difference between the calculated and observed travel times for the near and far offsets. Numerical forward modeling, using the proposed method indicates that errors between the estimated and measured anisotropic parameters are small. Using field data from an eight-azimuth walkaway VSP in Tarim Basin, we estimated the parameters δ and ε and built an anisotropic depth-velocity model for prestack depth migration processing of surface 3D seismic data. The results show improvement in imaging the carbonate reservoirs and minimizing the depth errors of the geological targets.展开更多
文摘Multi-azimuth walkaway vertical seismic profiling is an established technique for the estimation of in situ slowness surfaces and inferring anisotropy parameters.Normally,this technique requires the assumption of lateral homogeneity,which makes the horizontal slowness components at depths of downhole receivers equal to those measured at the surface.Any violations of this assumption,such as lateral heterogeneity or nonzero dip of intermediate interfaces,lead to distortions in reconstructed slowness surfaces and,consequently,to errors in estimated anisotropic parameters.In this work,we relax the assumption of lateral homogeneity and discuss how to correct vertical seismic profile data for weak lateral heterogeneity.We describe a procedure of downward continuation of recorded traveltimes that accounts for the presence of both vertical inhomogeneity and weak lateral heterogeneity,which produces correct slowness surfaces at depths of downhole receivers,noticing that sufficiently dense receiver coverage along a borehole is required to separate influences of vertical and lateral heterogeneity on measured traveltimes and obtain accurate estimates of the slowness surfaces.Once the slowness surfaces are found and a desired type of anisotropic model to be inverted is selected,the corresponding anisotropic parameters,providing the best fit to the estimated slownesses,can be obtained.We invert the slowness surfaces of P-waves for parameters of the simplest anisotropic model describing dipping fractures(transversely isotropic medium with a tilted symmetry axis).Five parameters of this model,namely,the P-wave velocity V0 in the direction of the symmetry axis,Thomsen's anisotropic coefficients e and d,the tilt n,and the azimuth b of the symmetry axis,can be estimated in a stable manner when maximum source offset is greater than half of receiver depth.
基金supported by the National 863 Program of China (Grant No.2006A09A102-11)National Natural Science Foundation of China (Grant No.40730424)Important National Science & Technology Specific Projects (Grant No.2008ZX05023-005)
文摘In this paper,we image the subsurface reflectors by interferometric imaging using primary and downgoing first-order free-surface related multiple reflections in walkaway VSP data.By analyzing the stack fold distribution,we find that primary-direct interferometric imaging has a smaller image range,but its stack fold is higher near the well while ghostdirect interferometric imaging is the opposite.We try to solve this problem by the joint interferometric imaging of walkaway VSP data,combining primary-direct interferometric imaging with ghost-direct interferometric imaging.In this way,we can effectively widen the imaging range,simultaneously increase the fold(especially near the well),suppress spurious interference,and improve the image SNR,so that we can get a more credible image.Test results on synthetic walkaway VSP data and field data show that joint interferometric imaging is very effective.
基金supported by the National Science and Technology Major Project of China(No.2011ZX05046)
文摘Estimation of Thomsen's anisotropic parameters is very important for accurate time-to-depth conversion and depth migration data processing. Compared with other methods, it is much easier and more reliable to estimate anisotropic parameters that are required for surface seismic depth imaging from vertical seismic profile(VSP) data, because the first arrivals of VSP data can be picked with much higher accuracy. In this study, we developed a method for estimating Thomsen's P-wave anisotropic parameters in VTI media using the first arrivals from walkaway VSP data. Model first-arrival travel times are calculated on the basis of the near-offset normal moveout correction velocity in VTI media and ray tracing using Thomsen's P-wave velocity approximation. Then, the anisotropic parameters δ and ε are determined by minimizing the difference between the calculated and observed travel times for the near and far offsets. Numerical forward modeling, using the proposed method indicates that errors between the estimated and measured anisotropic parameters are small. Using field data from an eight-azimuth walkaway VSP in Tarim Basin, we estimated the parameters δ and ε and built an anisotropic depth-velocity model for prestack depth migration processing of surface 3D seismic data. The results show improvement in imaging the carbonate reservoirs and minimizing the depth errors of the geological targets.