Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significant...Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significantly affected by the flow disturbance caused by aero-engine acceleration and deceleration. This would reduce the credibility of ASTF’s test results for the aero-engine. Therefore, first, this paper proposes a feedforward compensation-based L1 adaptive control method for ASTF to address this problem. The baseline controller is first designed based on ideal uncoupled closed-loop dynamics to achieve dynamic decoupling. Then, L1 adaptive control is adopted to deal with various uncertainties and ensure good control performance. To further enhance the anti-disturbance performance, a feedforward strategy based on disturbance prediction is designed in the L1 adaptive control framework to compensate for the unmatched flow disturbance, which cannot be measured directly. In addition, this strategy takes into account the effects of actuator dynamics. With this method, the feedforward term can be determined from the nominal model parameters despite uncertainties. Finally, to demonstrate the effectiveness of the proposed method, various comparative experiments are performed on a hardware-in-the-loop system of ASTF. The experimental results show that the proposed method possesses excellent tracking performance, anti-disturbance performance and robustness.展开更多
The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced techno...The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced technologies for greening next-generation aircraft.The primary purpose of the program is to develop new concepts aimed at decreasing the effects of aviation on the environment,increasing reliability,and promoting eco-friendly mobility.These ambitions are pursued through research on enabling technologies fostering noise and gas emissions reduction,mainly by improving aircraft aerodynamic performances.Within the Clean Sky framework,a multimodal morphing flap device was designed based on tight industrial requirements and tailored for large civil aircraft applications.The flap is deployed in one unique setting,and its cross section is morphed differently in take-off and landing to get the necessary extra lift for the specific flight phase.Moreover,during the cruise,the tip of the flap is deflected for load control and induced drag reduction.Before manufacturing the first flap prototype,a high-speed(Ma=0.3),large-scale test campaign(geometric scale factor 1:3)was deemed necessary to validate the performance improvements brought by this novel system at the aircraft level.On the other hand,the geometrical scaling of the flap prototype was considered impracticable due to the unscalability of the embedded mechanisms and actuators for shape transition.Therefore,a new architecture was conceived for the flap model to comply with the scaled dimensions requirements,withstand the relevant loads expected during the wind tunnel tests and emulate the shape transition capabilities of the true-scale flap.Simplified strategies were developed to effectively morph the model during wind tunnel tests while ensuring the robustness of each morphed configuration and maintaining adequate stiffness levels to prevent undesirable deviations from the intended aerodynamic shapes.Additionally,a simplified design was conceived for the flap-wing interface,allowing for quick adjustments of the flap setting and enabling load transmission paths like those arising between the full-scale flap and the wing.The design process followed for the definition of this challenging wind tunnel model has been addressed in this work,covering the definition of the conceptual layout,the numerical evaluation of the most severe loads expected during the test,and the verification of the structural layout by means of advanced finite element analyses.展开更多
Due to the maturing of Internet technology, the adaptive testing can be utilized in the web-based environment and the examinee can take the test anywhere and any time. The purpose of the research is to apply item resp...Due to the maturing of Internet technology, the adaptive testing can be utilized in the web-based environment and the examinee can take the test anywhere and any time. The purpose of the research is to apply item response theory (IRT), adaptive testing theory and web-service technique to construct an XML format itembank and a system of web- based adaptive testing (WAT) by the framework of threetiered client server distance testing.展开更多
This paper studies the technics of reducing item exposure by utilizing automatic item generation methods. Known test item calibration method uses item parameter estimation with the statistical data, collected during e...This paper studies the technics of reducing item exposure by utilizing automatic item generation methods. Known test item calibration method uses item parameter estimation with the statistical data, collected during examinees prior testing. Disadvantage of the mentioned item calibration method is the item exposure; when test items become familiar to the examinees. To reduce the item exposure, automatic item generation method is used, where item models are being constructed based on already calibrated test items without losing already estimated item parameters. A technic of item model extraction method from the already calibrated and therefore exposed test items described, which can be used by the test item development specialists to integrate automatic item generation principles with the existing testing applications.展开更多
To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the u...To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the universal model theory,the fuzzy model free adaptive control( FMFAC) algorithm is designed by configuring the spot static testing experiences as compensation function F( ·). Then the algorithm implementation process is provided and its quick convergence is proved. Using software to establish static load coupling model of multi-nodes,simulate and verify the validity of FMFAC algorithm,which is applied to wind turbines blade full-scale static testing. The results show that the adaptive decoupling ability of FMFAC is better. The traction of four load points can stay steady and change coordinately. Process error is not over ± 6 k N. The error rate is lower than 1% in special phase.This algorithm effectively eliminates the traction coupling of the static testing process,and makes wind turbine blade testing steadily.展开更多
Adaptive,morphing flaps are taking ever-increasing attention in civil aviation thanks to the expected benefits this technology can bring at the aircraft level in terms of high-lift performance improvement and related ...Adaptive,morphing flaps are taking ever-increasing attention in civil aviation thanks to the expected benefits this technology can bring at the aircraft level in terms of high-lift performance improvement and related fuel burnt reduction per flight.Relying upon morphing capabilities,it is possible to fix a unique setting for the flap and adapt the flap shape to match the aerodynamic requirements for take-off or landing.The proper morphed shapes can assure better high-lift performances than those achievable by referring to a conventional flap.Moreover,standing the unique flap setting for take-off and landing,a dramatic simplification of the flap deployment systems may be achieved.As a consequence of this simplification,the deployment system can be fully hosted in the wing,thus avoiding under-wing nacelles with significantly better aerodynamics and fuel consumption.The first step for a rational design of an adaptive flap consists in defining the target morphed shapes and the unique optimal flap setting in the take-off and landing phases.In this work,aerodynamic optimization analyses are carried out to determine the best flap setting and related morphed shapes in compliance with the take-off and landing requirements of a reference civil transport aircraft.Four different initial conditions are adopted to avoid the optimization falling into local optima,thus obtaining four groups of optimal candidate configurations.After comparing each candidate’s performance through 2D and 3D simulations,the optimal configuration has been selected.2D simulations show that the optimal configuration is characterized by a maximum lift increase of 31.92%in take-off and 9.04%in landing.According to 3D simulations,the rise in maximum lift equals 22.26%in take-off and 3.50%in landing.Numerical results are finally verified through wind tunnel tests,and the aerodynamic mechanism behind the obtained improvements is explained by carefully analyzing the flow field around the flap.展开更多
Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two line...Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.展开更多
Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,ca...Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.展开更多
To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Glo...To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Global-diagnosis sequence algorithm to replace the equal weight algorithm of primary test, and the test time is shortened without changing the fault diagnostic capability. The descriptions of five modified adaptive test algorithms are presented, and the capability comparison between the modified algorithm and the original algorithm is made to prove the validity of these algorithms.展开更多
Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However,...Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion-integration-differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.展开更多
A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multi...A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multiple dependent state sampling plan(MDSSP)concepts.Under accelerated conditions,the lifetime of a product follows the Weibull distribution with a known shape parameter,while the scale parameter can be determined using the acceleration factor(AF).The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive.An economic design of the proposed sampling plan was also considered for the ALT.A genetic algorithm with nonlinear optimization was used to estimate optimal plan parameters to minimize the average sample number(ASN)and total cost of inspection(TC)under both producer’s and consumer’s risks.Numerical results are presented to support the AMDSSP for the ALT,while performance comparisons between the AMDSSP,the MDSSP and a single sampling plan(SSP)for the ALT are discussed.Results indicated that the AMDSSP was more flexible and efficient for ASN and TC than the MDSSP and SSP plans under accelerated conditions.The AMDSSP also had a higher operating characteristic(OC)curve than both the existing sampling plans.Two real datasets of electronic devices for the ALT at high temperatures demonstrated the practicality and usefulness of the proposed sampling plan.展开更多
In order to realize the real-time and precise test for a weapon system of a certain type of fighter,a signal classification method according to attributes is proposed,common input channels for multiple signals are con...In order to realize the real-time and precise test for a weapon system of a certain type of fighter,a signal classification method according to attributes is proposed,common input channels for multiple signals are configured optimally,and a test adapter and an adaptive signal conditioning module is designed. The hardware of conditioning module can be configured flexibly and the programmable test range can be adjusted owing to programmable multiplexer. An FPGA adaptive filter is designed by the calculated filter coefficient vectors with LMS method to solve the problem of parallel test of fighter weapon system in electromagnetic interference environment. The adaptive signal conditioning technology is characterized by high efficiency,precision and integration. Its application makes the test system successful to conduct real-time and parallel test for a weapon system,which is developed based on VXI bus and virtual-instrument technology.展开更多
This paper discusses causes of the rate ripple in inertia guidance test equipment IGET, systematically analyses their effects an the rate ripple in IGTE. The analysis result shows: The rate ripple caused by the perio...This paper discusses causes of the rate ripple in inertia guidance test equipment IGET, systematically analyses their effects an the rate ripple in IGTE. The analysis result shows: The rate ripple caused by the periodic errors of inductosyn and angular encoder is higher at high speed than that caused by magnetic ripple torque and friction torque, and it cannot be eliminated by adjusting control parameters of the system. And based on the nonlinear adaptive control system theory, the paper puts forward a new control system scheme to eliminate the rate ripple caused by the periodic errors of inductosyn and angular encoder, develops the adaptive control rules and makes simulation and test. Experimental result shows a significant improvement on those tables for the period disturbs under the system scheme designed. By this plan, with the input of rate 200°/s, the rate ripple falls from 5°/s to 0. 4°/s within about 6s adaptive adjustment time, being a twelfth of before adaptation, which can not be reached by common classical controls. The experimental results conform with the simulation, which proves the validity and practicability of the plan.展开更多
A test items knowledge library system of for adaptive learning is proposed in this paper. The first step is to carry out the quantity and quality analysis of the test items by using the Bloom's revised taxonomy and s...A test items knowledge library system of for adaptive learning is proposed in this paper. The first step is to carry out the quantity and quality analysis of the test items by using the Bloom's revised taxonomy and scale anchoring respectively to produce the characteristics for test items. A smoothing method of arbitrary anchoring revised from scale anchoring is first proposed to make tests more accurate in distinguishing test levels. In addition, raised three dimensional indicators based on the Bloom's revised taxonomy are adopted to validate test contents and therefore it concretely describes the examining function of items. The items obtained have the precise and concrete properties; an item knowledge library is therefore constructed combining teaching materials and items using the technologies of ontology and knowledge management. Finally, a knowledge library system of test items is established to achieve the purpose of adaptive learning for learners.展开更多
Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sen...Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.展开更多
To resolve problems of complicated clutter, fast-varying scenes, and low signal-clutterratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection approach based on adapti...To resolve problems of complicated clutter, fast-varying scenes, and low signal-clutterratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection approach based on adaptive waveform design is proposed in this paper. Firstly, complicated sea clutter is modeled as compound Gaussian process, and a target is modeled as some scatterers with Gaussian reflectivity. Secondly, every dwell duration of radar is divided into several sub-dwells. Regular linear frequency modulated pulses are transmitted at Sub-dwell 1, and the received signal at this sub-dwell is used to estimate clutter covariance matrices and pre-detection. Estimated matrices are updated at every following sub-dwell by multiple particle filtering to cope with fast-varying clutter scenes of SBR. Furthermore, waveform of every following sub-dwell is designed adaptively according to mean square optimization technique. Finally, principal component analysis and generalized likelihood ratio test is used for mitigation of colored interference and property of constant false alarm rate, respectively. Simulation results show that, considering configuration of SBR and condition of complicated clutter, 9 dB is reduced for SCR which reliable detection requires by this target detection approach. Therefore, the work in this paper can markedly improve radar detection performance for weak targets.展开更多
To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structur...To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structure of modified robust optimal adaptive control is presented.The mathematic modeling of FESS is given and the influence of heat transfer is analyzed through energy view. To consider the influence of heat transfer in controller design, we introduce a matched uncertainty that represents heat transfer influence in the linearized system of FESS. Based on this linear system, we deduce the design of modified robust optimal adaptive control law in a general way. Meanwhile, the robust stability of the modified robust optimal adaptive control law is proved through using Lyapunov stability theory. Then, a typical aero-engine test condition with Mach Dash and Zoom-Climb is used to verify the effectiveness of the devised adaptive controller. The simulation results show that the designed controller has servo tracking and disturbance rejection performance under heat transfer uncertainty and disturbance;the relative steady-state and dynamic errors of pressure and temperature are both smaller than 1% and 0.2% respectively. Furthermore,the influence of the modification parameter c is analyzed through simulation. Finally, comparing with the standard ideal model reference adaptive controller, the modified robust optimal adaptive controller obviously provides better control performance than the ideal model reference adaptive controller does.展开更多
The problem of detecting signal with multiple input mul-tiple output (MIMO) radar in correlated Gaussian clutter dominated scenario with unknown covariance matrix is dealt with. The gen-eral MIMO model, with widely ...The problem of detecting signal with multiple input mul-tiple output (MIMO) radar in correlated Gaussian clutter dominated scenario with unknown covariance matrix is dealt with. The gen-eral MIMO model, with widely separated sub-arrays and co-located antennas at each sub-array, is adopted. Firstly, the generalized likelihood ratio test (GLRT) with known covariance matrix is ob-tained, and then the Rao and Wald detectors are devised, which have proved that the Rao and Wald test coincide with GLRT detec-tor. To make the detectors fully adaptive, the secondary data with signal-free will be collected to estimate the covariance. The per-formance of the proposed detector is analyzed, however, it is just ancillary. A thorough performance assessment by several numer-ical examples is also given, which has considered the sense with co-located antennas configure of transmitters and receivers array. The results show that the performance the proposed adaptive de-tector is better than LJ-GLRT, and the loss can be acceptable in comparison to their non-adaptive counterparts.展开更多
To investigate the attitude-switching mechanisms of existing jet slotters,which integrate drilling,punching and slotting operations,and to improve its fracture ability,we used the power bond diagram theory to analyse ...To investigate the attitude-switching mechanisms of existing jet slotters,which integrate drilling,punching and slotting operations,and to improve its fracture ability,we used the power bond diagram theory to analyse the dynamic flow pressure,and force of slotters.A mathematical model was developed for the dynamic characteristics of slotter systems.Furthermore,to study the effect of the main characteristic parameters on the ability of the nozzle to erode sandstone,multi-orthogonal experiments were carried out.And the optimised slots were applied in later practical operations.The research results show that the inlet fluid passed through the time-varying orifice to generate pressure differential thrust,which overcame the spring force,pushed the valve core to open the side nozzle,and closed the rear cavity channel thereby realising the switch of the slotter attitude.An optimal plan was established to balance the diameter,depth,and volume of punching,and a rock-breaking plan was developed for the slotter.Subsequently,the optimised water jet slotter was practically used in coal seam gas drainage.Compared with conventional dense drilling,water jet slotting technology significantly improves the ability,efficiency,and effect of increasing the permeability of the coal seam.展开更多
基金supported by the“Shuimu Tsinghua Scholar”Project,China(No.2024SM223)the National Science and Technology Major Project,China(No.Y2022-V-0002-0028).
文摘Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significantly affected by the flow disturbance caused by aero-engine acceleration and deceleration. This would reduce the credibility of ASTF’s test results for the aero-engine. Therefore, first, this paper proposes a feedforward compensation-based L1 adaptive control method for ASTF to address this problem. The baseline controller is first designed based on ideal uncoupled closed-loop dynamics to achieve dynamic decoupling. Then, L1 adaptive control is adopted to deal with various uncertainties and ensure good control performance. To further enhance the anti-disturbance performance, a feedforward strategy based on disturbance prediction is designed in the L1 adaptive control framework to compensate for the unmatched flow disturbance, which cannot be measured directly. In addition, this strategy takes into account the effects of actuator dynamics. With this method, the feedforward term can be determined from the nominal model parameters despite uncertainties. Finally, to demonstrate the effectiveness of the proposed method, various comparative experiments are performed on a hardware-in-the-loop system of ASTF. The experimental results show that the proposed method possesses excellent tracking performance, anti-disturbance performance and robustness.
基金carried out in the framework of AIRGREEN2 Project,which gratefully received funding from the Clean Sky 2 Joint Undertaking,under the European’s Union Horizon 2020 Research and Innovation Program,Grant Agreement(No.807089—REG GAM 4822018—H2020-IBA-CS2-GAMS-2017)funded by TUBITAK 2214-A-International Research Fellowship Programme for Ph.D.Students。
文摘The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced technologies for greening next-generation aircraft.The primary purpose of the program is to develop new concepts aimed at decreasing the effects of aviation on the environment,increasing reliability,and promoting eco-friendly mobility.These ambitions are pursued through research on enabling technologies fostering noise and gas emissions reduction,mainly by improving aircraft aerodynamic performances.Within the Clean Sky framework,a multimodal morphing flap device was designed based on tight industrial requirements and tailored for large civil aircraft applications.The flap is deployed in one unique setting,and its cross section is morphed differently in take-off and landing to get the necessary extra lift for the specific flight phase.Moreover,during the cruise,the tip of the flap is deflected for load control and induced drag reduction.Before manufacturing the first flap prototype,a high-speed(Ma=0.3),large-scale test campaign(geometric scale factor 1:3)was deemed necessary to validate the performance improvements brought by this novel system at the aircraft level.On the other hand,the geometrical scaling of the flap prototype was considered impracticable due to the unscalability of the embedded mechanisms and actuators for shape transition.Therefore,a new architecture was conceived for the flap model to comply with the scaled dimensions requirements,withstand the relevant loads expected during the wind tunnel tests and emulate the shape transition capabilities of the true-scale flap.Simplified strategies were developed to effectively morph the model during wind tunnel tests while ensuring the robustness of each morphed configuration and maintaining adequate stiffness levels to prevent undesirable deviations from the intended aerodynamic shapes.Additionally,a simplified design was conceived for the flap-wing interface,allowing for quick adjustments of the flap setting and enabling load transmission paths like those arising between the full-scale flap and the wing.The design process followed for the definition of this challenging wind tunnel model has been addressed in this work,covering the definition of the conceptual layout,the numerical evaluation of the most severe loads expected during the test,and the verification of the structural layout by means of advanced finite element analyses.
文摘Due to the maturing of Internet technology, the adaptive testing can be utilized in the web-based environment and the examinee can take the test anywhere and any time. The purpose of the research is to apply item response theory (IRT), adaptive testing theory and web-service technique to construct an XML format itembank and a system of web- based adaptive testing (WAT) by the framework of threetiered client server distance testing.
文摘This paper studies the technics of reducing item exposure by utilizing automatic item generation methods. Known test item calibration method uses item parameter estimation with the statistical data, collected during examinees prior testing. Disadvantage of the mentioned item calibration method is the item exposure; when test items become familiar to the examinees. To reduce the item exposure, automatic item generation method is used, where item models are being constructed based on already calibrated test items without losing already estimated item parameters. A technic of item model extraction method from the already calibrated and therefore exposed test items described, which can be used by the test item development specialists to integrate automatic item generation principles with the existing testing applications.
基金National Natural Science Foundation of China(No.51567018)
文摘To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the universal model theory,the fuzzy model free adaptive control( FMFAC) algorithm is designed by configuring the spot static testing experiences as compensation function F( ·). Then the algorithm implementation process is provided and its quick convergence is proved. Using software to establish static load coupling model of multi-nodes,simulate and verify the validity of FMFAC algorithm,which is applied to wind turbines blade full-scale static testing. The results show that the adaptive decoupling ability of FMFAC is better. The traction of four load points can stay steady and change coordinately. Process error is not over ± 6 k N. The error rate is lower than 1% in special phase.This algorithm effectively eliminates the traction coupling of the static testing process,and makes wind turbine blade testing steadily.
基金co-supported by the National Natural Science Foundation of China (Nos. 12172275, 12090030)the “111” Program, China (No. B18040)
文摘Adaptive,morphing flaps are taking ever-increasing attention in civil aviation thanks to the expected benefits this technology can bring at the aircraft level in terms of high-lift performance improvement and related fuel burnt reduction per flight.Relying upon morphing capabilities,it is possible to fix a unique setting for the flap and adapt the flap shape to match the aerodynamic requirements for take-off or landing.The proper morphed shapes can assure better high-lift performances than those achievable by referring to a conventional flap.Moreover,standing the unique flap setting for take-off and landing,a dramatic simplification of the flap deployment systems may be achieved.As a consequence of this simplification,the deployment system can be fully hosted in the wing,thus avoiding under-wing nacelles with significantly better aerodynamics and fuel consumption.The first step for a rational design of an adaptive flap consists in defining the target morphed shapes and the unique optimal flap setting in the take-off and landing phases.In this work,aerodynamic optimization analyses are carried out to determine the best flap setting and related morphed shapes in compliance with the take-off and landing requirements of a reference civil transport aircraft.Four different initial conditions are adopted to avoid the optimization falling into local optima,thus obtaining four groups of optimal candidate configurations.After comparing each candidate’s performance through 2D and 3D simulations,the optimal configuration has been selected.2D simulations show that the optimal configuration is characterized by a maximum lift increase of 31.92%in take-off and 9.04%in landing.According to 3D simulations,the rise in maximum lift equals 22.26%in take-off and 3.50%in landing.Numerical results are finally verified through wind tunnel tests,and the aerodynamic mechanism behind the obtained improvements is explained by carefully analyzing the flow field around the flap.
基金supported by the National Natural Science Foundation of China(61971432)Taishan Scholar Project of Shandong Province(tsqn201909156)the Outstanding Youth Innovation Team Program of University in Shandong Province(2019KJN031)。
文摘Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.
基金supported by the National Natural Science Foundation of China (No.61971412)。
文摘Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.
文摘To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Global-diagnosis sequence algorithm to replace the equal weight algorithm of primary test, and the test time is shortened without changing the fault diagnostic capability. The descriptions of five modified adaptive test algorithms are presented, and the capability comparison between the modified algorithm and the original algorithm is made to prove the validity of these algorithms.
文摘Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion-integration-differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
基金This research was supported by The Science,Research and Innovation Promotion Funding(TSRI)(Grant No.FRB650070/0168)This research block grants was managed under Rajamangala University of Technology Thanyaburi(FRB65E0634M.3).
文摘A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multiple dependent state sampling plan(MDSSP)concepts.Under accelerated conditions,the lifetime of a product follows the Weibull distribution with a known shape parameter,while the scale parameter can be determined using the acceleration factor(AF).The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive.An economic design of the proposed sampling plan was also considered for the ALT.A genetic algorithm with nonlinear optimization was used to estimate optimal plan parameters to minimize the average sample number(ASN)and total cost of inspection(TC)under both producer’s and consumer’s risks.Numerical results are presented to support the AMDSSP for the ALT,while performance comparisons between the AMDSSP,the MDSSP and a single sampling plan(SSP)for the ALT are discussed.Results indicated that the AMDSSP was more flexible and efficient for ASN and TC than the MDSSP and SSP plans under accelerated conditions.The AMDSSP also had a higher operating characteristic(OC)curve than both the existing sampling plans.Two real datasets of electronic devices for the ALT at high temperatures demonstrated the practicality and usefulness of the proposed sampling plan.
基金Sponsored by the Key Equipment Research Project of Air Force of China (KJZ06119)
文摘In order to realize the real-time and precise test for a weapon system of a certain type of fighter,a signal classification method according to attributes is proposed,common input channels for multiple signals are configured optimally,and a test adapter and an adaptive signal conditioning module is designed. The hardware of conditioning module can be configured flexibly and the programmable test range can be adjusted owing to programmable multiplexer. An FPGA adaptive filter is designed by the calculated filter coefficient vectors with LMS method to solve the problem of parallel test of fighter weapon system in electromagnetic interference environment. The adaptive signal conditioning technology is characterized by high efficiency,precision and integration. Its application makes the test system successful to conduct real-time and parallel test for a weapon system,which is developed based on VXI bus and virtual-instrument technology.
文摘This paper discusses causes of the rate ripple in inertia guidance test equipment IGET, systematically analyses their effects an the rate ripple in IGTE. The analysis result shows: The rate ripple caused by the periodic errors of inductosyn and angular encoder is higher at high speed than that caused by magnetic ripple torque and friction torque, and it cannot be eliminated by adjusting control parameters of the system. And based on the nonlinear adaptive control system theory, the paper puts forward a new control system scheme to eliminate the rate ripple caused by the periodic errors of inductosyn and angular encoder, develops the adaptive control rules and makes simulation and test. Experimental result shows a significant improvement on those tables for the period disturbs under the system scheme designed. By this plan, with the input of rate 200°/s, the rate ripple falls from 5°/s to 0. 4°/s within about 6s adaptive adjustment time, being a twelfth of before adaptation, which can not be reached by common classical controls. The experimental results conform with the simulation, which proves the validity and practicability of the plan.
文摘A test items knowledge library system of for adaptive learning is proposed in this paper. The first step is to carry out the quantity and quality analysis of the test items by using the Bloom's revised taxonomy and scale anchoring respectively to produce the characteristics for test items. A smoothing method of arbitrary anchoring revised from scale anchoring is first proposed to make tests more accurate in distinguishing test levels. In addition, raised three dimensional indicators based on the Bloom's revised taxonomy are adopted to validate test contents and therefore it concretely describes the examining function of items. The items obtained have the precise and concrete properties; an item knowledge library is therefore constructed combining teaching materials and items using the technologies of ontology and knowledge management. Finally, a knowledge library system of test items is established to achieve the purpose of adaptive learning for learners.
文摘Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.
基金supported by the National Defense Pre-Research Foundation of China
文摘To resolve problems of complicated clutter, fast-varying scenes, and low signal-clutterratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection approach based on adaptive waveform design is proposed in this paper. Firstly, complicated sea clutter is modeled as compound Gaussian process, and a target is modeled as some scatterers with Gaussian reflectivity. Secondly, every dwell duration of radar is divided into several sub-dwells. Regular linear frequency modulated pulses are transmitted at Sub-dwell 1, and the received signal at this sub-dwell is used to estimate clutter covariance matrices and pre-detection. Estimated matrices are updated at every following sub-dwell by multiple particle filtering to cope with fast-varying clutter scenes of SBR. Furthermore, waveform of every following sub-dwell is designed adaptively according to mean square optimization technique. Finally, principal component analysis and generalized likelihood ratio test is used for mitigation of colored interference and property of constant false alarm rate, respectively. Simulation results show that, considering configuration of SBR and condition of complicated clutter, 9 dB is reduced for SCR which reliable detection requires by this target detection approach. Therefore, the work in this paper can markedly improve radar detection performance for weak targets.
基金funded by China Scholarship Council (CSC)and National Science and Technology Major Project,China(No. 2017-V-0015-0067)。
文摘To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structure of modified robust optimal adaptive control is presented.The mathematic modeling of FESS is given and the influence of heat transfer is analyzed through energy view. To consider the influence of heat transfer in controller design, we introduce a matched uncertainty that represents heat transfer influence in the linearized system of FESS. Based on this linear system, we deduce the design of modified robust optimal adaptive control law in a general way. Meanwhile, the robust stability of the modified robust optimal adaptive control law is proved through using Lyapunov stability theory. Then, a typical aero-engine test condition with Mach Dash and Zoom-Climb is used to verify the effectiveness of the devised adaptive controller. The simulation results show that the designed controller has servo tracking and disturbance rejection performance under heat transfer uncertainty and disturbance;the relative steady-state and dynamic errors of pressure and temperature are both smaller than 1% and 0.2% respectively. Furthermore,the influence of the modification parameter c is analyzed through simulation. Finally, comparing with the standard ideal model reference adaptive controller, the modified robust optimal adaptive controller obviously provides better control performance than the ideal model reference adaptive controller does.
基金supported by the Fundamental Research Funds for the Central Universities (103.1.2-E022050205)
文摘The problem of detecting signal with multiple input mul-tiple output (MIMO) radar in correlated Gaussian clutter dominated scenario with unknown covariance matrix is dealt with. The gen-eral MIMO model, with widely separated sub-arrays and co-located antennas at each sub-array, is adopted. Firstly, the generalized likelihood ratio test (GLRT) with known covariance matrix is ob-tained, and then the Rao and Wald detectors are devised, which have proved that the Rao and Wald test coincide with GLRT detec-tor. To make the detectors fully adaptive, the secondary data with signal-free will be collected to estimate the covariance. The per-formance of the proposed detector is analyzed, however, it is just ancillary. A thorough performance assessment by several numer-ical examples is also given, which has considered the sense with co-located antennas configure of transmitters and receivers array. The results show that the performance the proposed adaptive de-tector is better than LJ-GLRT, and the loss can be acceptable in comparison to their non-adaptive counterparts.
基金supported by the National Natural Science Foundation Outstanding Youth Fund(No.51625401)the Chongqing Natural Science Foundation(No.cstc2018jcyjAX0542)the Program for Changjiang Scholars and Innovative Research Team in Chongqing University(No.IRT17R112).
文摘To investigate the attitude-switching mechanisms of existing jet slotters,which integrate drilling,punching and slotting operations,and to improve its fracture ability,we used the power bond diagram theory to analyse the dynamic flow pressure,and force of slotters.A mathematical model was developed for the dynamic characteristics of slotter systems.Furthermore,to study the effect of the main characteristic parameters on the ability of the nozzle to erode sandstone,multi-orthogonal experiments were carried out.And the optimised slots were applied in later practical operations.The research results show that the inlet fluid passed through the time-varying orifice to generate pressure differential thrust,which overcame the spring force,pushed the valve core to open the side nozzle,and closed the rear cavity channel thereby realising the switch of the slotter attitude.An optimal plan was established to balance the diameter,depth,and volume of punching,and a rock-breaking plan was developed for the slotter.Subsequently,the optimised water jet slotter was practically used in coal seam gas drainage.Compared with conventional dense drilling,water jet slotting technology significantly improves the ability,efficiency,and effect of increasing the permeability of the coal seam.