期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Novel Apparatus for Surveillance of Green Energy System Based on WSSs
1
作者 Joy I. -Z. Chen Yue Hsin Gien +1 位作者 Wen Bin Wu Chieh Wen Liou 《Engineering(科研)》 2013年第1期135-140,共6页
The WSSs (wireless sensor systems) concept is applied to implement an uninterrupted solar energy surveillance system in this work. The completed system is comprised of three major sub-systems that include a charging s... The WSSs (wireless sensor systems) concept is applied to implement an uninterrupted solar energy surveillance system in this work. The completed system is comprised of three major sub-systems that include a charging sub-system, a control sub-system and a display sub-system. Based on several transmission standards, including Bluetooth, Wifi and Zigbee capability combined with wireless transmission techniques, the proposed surveillance system is designed for monitoring a solar energy system. The performance of the simulated WSSs is evaluated using statistical report results. The proposed surveillance system can be fully extended to several different kinds of applications, such as, health care and environmental?inspection. The experimental measurement results significantly show that channel fading over the propagation channel dominates the developed system performance. 展开更多
关键词 BLUETOOTH Wifi HEALTH CARE SOLAR SURVEILLANCE wsss ZIGBEE
暂未订购
A Weakly Supervised Semantic Segmentation Method Based on Improved Conformer
2
作者 Xueli Shen Meng Wang 《Computers, Materials & Continua》 2025年第3期4631-4647,共17页
In the field of Weakly Supervised Semantic Segmentation(WSSS),methods based on image-level annotation face challenges in accurately capturing objects of varying sizes,lacking sensitivity to image details,and having hi... In the field of Weakly Supervised Semantic Segmentation(WSSS),methods based on image-level annotation face challenges in accurately capturing objects of varying sizes,lacking sensitivity to image details,and having high computational costs.To address these issues,we improve the dual-branch architecture of the Conformer as the fundamental network for generating class activation graphs,proposing a multi-scale efficient weakly-supervised semantic segmentation method based on the improved Conformer.In the Convolution Neural Network(CNN)branch,a cross-scale feature integration convolution module is designed,incorporating multi-receptive field convolution layers to enhance the model’s ability to capture long-range dependencies and improve sensitivity to multi-scale objects.In the Vision Transformer(ViT)branch,an efficient multi-head self-attention module is developed,reducing unnecessary computation through spatial compression and feature partitioning,thereby improving overall network efficiency.Finally,a multi-feature coupling module is introduced to complement the features generated by both branches.This design retains the strength of Convolution Neural Network in extracting local details while harnessing the strength of Vision Transformer to capture comprehensive global features.Experimental results show that the mean Intersection over Union of the image segmentation results of the proposed method on the validation and test sets of the PASCAL VOC 2012 datasets are improved by 2.9%and 3.6%,respectively,over the TransCAM algorithm.Besides,the improved model demonstrates a 1.3%increase of the mean Intersections over Union on the COCO 2014 datasets.Additionally,the number of parameters and the floating-point operations are reduced by 16.2%and 12.9%.However,the proposed method still has limitations of poor performance when dealing with complex scenarios.There is a need for further enhancing the performance of this method to address this issue. 展开更多
关键词 wsss CAM transformer CNN multi-scale feature extraction LIGHTWEIGHT
在线阅读 下载PDF
基于深度学习的弱监督语义分割方法综述 被引量:6
3
作者 项伟康 周全 +5 位作者 崔景程 莫智懿 吴晓富 欧卫华 王井东 刘文予 《中国图象图形学报》 CSCD 北大核心 2024年第5期1146-1168,共23页
语义分割是计算机视觉领域的基本任务,旨在为每个像素分配语义类别标签,实现对图像的像素级理解。得益于深度学习的发展,基于深度学习的全监督语义分割方法取得了巨大进展。然而,这些方法往往需要大量带有像素级标注的训练数据,标注成... 语义分割是计算机视觉领域的基本任务,旨在为每个像素分配语义类别标签,实现对图像的像素级理解。得益于深度学习的发展,基于深度学习的全监督语义分割方法取得了巨大进展。然而,这些方法往往需要大量带有像素级标注的训练数据,标注成本巨大,限制了其在诸如自动驾驶、医学图像分析以及工业控制等实际场景中的应用。为了降低数据的标注成本并进一步拓宽语义分割的应用场景,研究者们越来越关注基于深度学习的弱监督语义分割方法,希望通过诸如图像级标注、最小包围盒标注、线标注和点标注等弱标注信息实现图像的像素级分割预测。首先对语义分割任务进行了简要介绍,并分析了全监督语义分割所面临的困境,从而引出弱监督语义分割。然后,介绍了相关数据集和评估指标。接着,根据弱标注的类型和受关注程度,从图像级标注、其他弱标注以及大模型辅助这3个方面回顾和讨论了弱监督语义分割的研究进展。其中,第2类弱监督语义分割方法包括基于最小包围盒、线和点标注的弱监督语义分割。最后,分析了弱监督语义分割领域存在的问题与挑战,并就其未来可能的研究方向提出建议,旨在进一步推动弱监督语义分割领域研究的发展。 展开更多
关键词 语义分割 深度学习 弱监督语义分割(wsss) 图像级标注 最小包围盒标注 线标注 点标注 大模型
原文传递
支持性就业服务对精神分裂症患者职业康复的疗效观察 被引量:5
4
作者 陈彦华 杨琼玮 李辉 《中国全科医学》 CAS 北大核心 2020年第S01期270-272,共3页
目的将支持性就业服务应用于精神分裂症患者,观察其对患者职业康复的影响。方法选取2017年1月—2019年1月宁夏民政厅民康医院收治的60例精神分裂症患者作为研究对象,随机分为常规门诊随访服务(对照组)、支持性就业服务(观察组),各30例... 目的将支持性就业服务应用于精神分裂症患者,观察其对患者职业康复的影响。方法选取2017年1月—2019年1月宁夏民政厅民康医院收治的60例精神分裂症患者作为研究对象,随机分为常规门诊随访服务(对照组)、支持性就业服务(观察组),各30例。比较两组患者职业康复效果。结果两组间WSSS评分、MRSS评分比较,干预前差异无统计学意义,干预后观察组明显改善,与对照组比较差异有统计学意义(P<0.05);PANSS评分对比两组患者干预后均有改善,但观察组改善更为显著,优于对照组,差异有统计学意义(P<0.05);观察组患者干预后3个月、6个月、12个月就业率均显著高于对照组,差异有统计学意义(P<0.05)。结论支持性就业服务在精神分裂症患者中的应用,对于提升患者工作社交技巧作用显著,能够改善患者康复状态,提升就业率,值得临床借鉴。 展开更多
关键词 支持性就业服务 精神分裂症 职业康复 wsss评分 MRSS评分
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部