The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulat...The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulators.Here,by using the first-principles calculations and the phonon Boltzmann transport equation(BTE),we studied the phonon transport properties of WS2/WSe2 bilayer heterostructures(WS2/WSe2-BHs).The lattice thermal conductivity of the ideal WS2/WSe2-BHs crystals at room temperature(RT)was 62.98 W/mK,which was clearly lower than the average lattice thermal conductivity of WS2 and WSe2 single layers.Another interesting finding is that the optical branches below 4.73 THz and acoustic branches have powerful coupling,mainly dominating the lattice thermal conductivity.Further,we also noticed that the phonon mean free path(MFP)of the WS2/WSe2-BHs(233 nm)was remarkably attenuated by the free-standing monolayer WS2(526 nm)and WSe2(1720 nm),leading to a small significant size effect of the WS2/WSe2-BHs.Our results systematically demonstrate the low optical and acoustic phonon modes-dominated phonon thermal transport in heterostructures and give a few important guidelines for the synthesis of van der Waals heterostructures with excellent phonon transport properties.展开更多
Molybdenum and tungsten chalcogenides have attracted tremendous attention in energy storage and conversion due to their outstanding physicochemical and electrochemical properties.There are intensive studies on molybde...Molybdenum and tungsten chalcogenides have attracted tremendous attention in energy storage and conversion due to their outstanding physicochemical and electrochemical properties.There are intensive studies on molybdenum and tungsten chalcogenides for energy storage and conversion,however,there is no systematic review on the applications of WS2,Mo Se2and WSe2as anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs),except Mo S2.Considering the importance of these contents,it is extremely necessary to overview the recent development of novel layered WS2,Mo Se2and WSe2beyond Mo S2in energy storage.Here,we will systematically overview the recent progress of WS2,Mo Se2and WSe2as anode materials in LIBs and SIBs.This review will also discuss the opportunities,and perspectives of these materials in the energy storage fields.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51720105007,51806031,11602149,and GZ1257)the Fundamental Research Funds for the Central Universities,China(Grant Nos.DUT16RC(3)116 and DUT19RC(3)006)The computing resources from Supercomputer Center of Dalian University of Technology and ScGrid are greatly acknowledged。
文摘The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulators.Here,by using the first-principles calculations and the phonon Boltzmann transport equation(BTE),we studied the phonon transport properties of WS2/WSe2 bilayer heterostructures(WS2/WSe2-BHs).The lattice thermal conductivity of the ideal WS2/WSe2-BHs crystals at room temperature(RT)was 62.98 W/mK,which was clearly lower than the average lattice thermal conductivity of WS2 and WSe2 single layers.Another interesting finding is that the optical branches below 4.73 THz and acoustic branches have powerful coupling,mainly dominating the lattice thermal conductivity.Further,we also noticed that the phonon mean free path(MFP)of the WS2/WSe2-BHs(233 nm)was remarkably attenuated by the free-standing monolayer WS2(526 nm)and WSe2(1720 nm),leading to a small significant size effect of the WS2/WSe2-BHs.Our results systematically demonstrate the low optical and acoustic phonon modes-dominated phonon thermal transport in heterostructures and give a few important guidelines for the synthesis of van der Waals heterostructures with excellent phonon transport properties.
基金supported by the National Natural Science Foundation of China (Grant No. 51302079)the Natural Science Foundation of Hunan Province (Grant No. 2017JJ1008)
文摘Molybdenum and tungsten chalcogenides have attracted tremendous attention in energy storage and conversion due to their outstanding physicochemical and electrochemical properties.There are intensive studies on molybdenum and tungsten chalcogenides for energy storage and conversion,however,there is no systematic review on the applications of WS2,Mo Se2and WSe2as anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs),except Mo S2.Considering the importance of these contents,it is extremely necessary to overview the recent development of novel layered WS2,Mo Se2and WSe2beyond Mo S2in energy storage.Here,we will systematically overview the recent progress of WS2,Mo Se2and WSe2as anode materials in LIBs and SIBs.This review will also discuss the opportunities,and perspectives of these materials in the energy storage fields.