等离子体处理作为一种高效的表面改性技术,在二维纳米材料/碳基复合结构的形貌调控中具有独特优势。本文通过调控等离子体处理参数(例如气体氛围),研究其对二硫化钨/碳(WS2/C)复合结构表面形貌和缺陷分布的影响。结合扫描电子显微镜(Sca...等离子体处理作为一种高效的表面改性技术,在二维纳米材料/碳基复合结构的形貌调控中具有独特优势。本文通过调控等离子体处理参数(例如气体氛围),研究其对二硫化钨/碳(WS2/C)复合结构表面形貌和缺陷分布的影响。结合扫描电子显微镜(Scanning Electron Microscope,SEM)和基于拉曼光谱的表征,揭示了等离子体处理诱导的WS2边缘选择性和碳纳米纤维骨架的协同效应,提高了复合材料的比表面积和边缘活性位点暴露程度。试验结果表明,参数优化后,等离子体处理可以有效调控WS2纳米晶片在碳纤维骨架中的分散性,并抑制晶片层间堆叠和层片团聚,从而增加边缘位置的暴露程度。该研究为高性能WS2/C复合材料的可控制备提供了新思路,推动其在能源存储与转换领域的实际应用。展开更多
Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a bloc...Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a block-on-ring tribometer rubbing against Cu-5%Ag alloy ring. The results demonstrated that 800 ~C was the optimum sintering temperature for Cu-graphite-WS2 dual-lubricant composites to obtain the best comprehensive properties of mechanical strength and lubrication performance. Contact voltage drops of the Cu-based composites increased with increasing the mass ratio of WS2 to graphite. The Cu-based composite with 20% graphite and 10% WS2 showed the best wear resistance due to the excellent synergetic lubricating effect of graphite and WS2. The reasonable addition of WS2 into the Cu-graphite composite can remarkably improve the wear resistance without much rise of electrical energy loss which provides a novel principle of designing suitable sliding electrical contact materials for industrial applications.展开更多
文摘等离子体处理作为一种高效的表面改性技术,在二维纳米材料/碳基复合结构的形貌调控中具有独特优势。本文通过调控等离子体处理参数(例如气体氛围),研究其对二硫化钨/碳(WS2/C)复合结构表面形貌和缺陷分布的影响。结合扫描电子显微镜(Scanning Electron Microscope,SEM)和基于拉曼光谱的表征,揭示了等离子体处理诱导的WS2边缘选择性和碳纳米纤维骨架的协同效应,提高了复合材料的比表面积和边缘活性位点暴露程度。试验结果表明,参数优化后,等离子体处理可以有效调控WS2纳米晶片在碳纤维骨架中的分散性,并抑制晶片层间堆叠和层片团聚,从而增加边缘位置的暴露程度。该研究为高性能WS2/C复合材料的可控制备提供了新思路,推动其在能源存储与转换领域的实际应用。
基金Projects(9102601860979017) supported by the National Natural Science Foundation of ChinaProject(20110111110015) supported by the Doctoral Fund of Ministry of Education of China
文摘Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a block-on-ring tribometer rubbing against Cu-5%Ag alloy ring. The results demonstrated that 800 ~C was the optimum sintering temperature for Cu-graphite-WS2 dual-lubricant composites to obtain the best comprehensive properties of mechanical strength and lubrication performance. Contact voltage drops of the Cu-based composites increased with increasing the mass ratio of WS2 to graphite. The Cu-based composite with 20% graphite and 10% WS2 showed the best wear resistance due to the excellent synergetic lubricating effect of graphite and WS2. The reasonable addition of WS2 into the Cu-graphite composite can remarkably improve the wear resistance without much rise of electrical energy loss which provides a novel principle of designing suitable sliding electrical contact materials for industrial applications.