为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Envi...为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的FNL全球再分析资料(Final Operational Global Analysis)、先进星载热发射和反射辐射仪全球数字高程模型以及兰州中川机场的实况观测资料,采用中尺度数值天气预报模式(Weather Research and Forecasting Model,WRF)、WRF结合计算流体动力学(Computational Fluid Dynamics,CFD)方法、长短期神经网络(Long Short-Term Memory,LSTM)方法,对2021年4月15-16日兰州中川机场的两次风切变过程进行模拟分析。结果表明:(1)在小于1 km的网格中使用大涡模拟,WRF模式在单个站点风速模拟任务中表现更好,但在近地面水平风场风速模拟效果上,不如WRF模式结合计算流体力学模型方案;(2)对于飞机降落过程中遭遇的两次低空风切变的模拟,WRF-LES和WRF-CFD两种模式都可以模拟出第一次低空风切变,而第二次受传入模式的WRF风速数据值较小的影响,两种模式风速差都没有达到阈值,需要在后续工作中进一步验证;(3)低风速条件(6 m·s^(-1))下,基于LSTM的单变量风速预测模型平均绝对误差基本维持在0.59 m·s^(-1),能较好地把握不同地形与环流背景条件下风速变化的非线性关系,虽然受到WRF误差和观测要素不全的限制,多变量风速预测能在保证平均绝对百分比误差小于6.60%的情况下,以更高的计算效率和泛化能力实现风速预测。本文不仅验证了WRF-CFD和WRF-LES耦合方案在风场和低空风切变预报中的差异,还探讨了基于LSTM的风速预测的可行性和准确性,期望为提高风场模拟精度,缩短精细风场模拟时间提供新的视角和方法。展开更多
2020年3月23日08:00(北京时,下同)至26日08:00在云南昆明至老挝万象国际航线途经地区出现一次大范围以冰雹、雷暴大风为主并伴随有局地短时强降水的强对流天气过程。本文基于中尺度数值模式WRFV4.2(Weather Research and Forecasting Mo...2020年3月23日08:00(北京时,下同)至26日08:00在云南昆明至老挝万象国际航线途经地区出现一次大范围以冰雹、雷暴大风为主并伴随有局地短时强降水的强对流天气过程。本文基于中尺度数值模式WRFV4.2(Weather Research and Forecasting Model)和美国国家环境预报中心(NCEP)的FNL(Final Operational Global Analysis)资料,模拟了此次强对流天气过程,并利用中国气象局逐小时气象站数据对模拟结果进行可靠性检验。此外,对WRF模式输出的多种物理量进行了诊断分析,以期为云南昆明-老挝万象航线的航空气象安全提供参考。结果表明:(1)WRF模式能够较好地模拟气温、可降水量等要素,但在白天期间近地面风场的模拟值偏大。(2)模拟输出的物理量场可以指示强雷暴天气发生的时间和地点,具有一定的时空预报预警作用,可根据其判断强对流天气对飞行的影响以及影响程度。(3)此次强对流主要是受南支槽东移影响,高层干冷空气叠加在暖湿空气上,形成不稳定结构,被地面辐合线触发而引起。航线途经地区的CAPE(Convective Available Potential Energy)不稳定能量大,水汽条件充沛,9 km高度以下上升运动与下沉运动交替出现,容易对航班造成颠簸。加之0℃层位于3 km左右的高度,航班在飞行时容易造成机身覆冰或遭遇冰雹天气,给飞行安全造成一定的影响。展开更多
以往开展的基于长江流域WRF(Weather Research and Forecasting)模式的微物理过程方案参数化优选的研究,没有对长江中下游这一特定区域多个气象要素积云对流参数化方案进行优选。本研究在适合微物理过程、边界层等参数化方案的基础上,...以往开展的基于长江流域WRF(Weather Research and Forecasting)模式的微物理过程方案参数化优选的研究,没有对长江中下游这一特定区域多个气象要素积云对流参数化方案进行优选。本研究在适合微物理过程、边界层等参数化方案的基础上,选用长江中下游流域为研究对象,针对降水、气温进行三种积云对流参数化方案KF(Kain-Fritsch)、BMJ(Betts-Miller-Janjic)及GF(Grell-Freitas)的优选,并同时从不同海拔、水汽来源两个角度对比分析三种方案产生差异的原因,从而针对不同天气型选择合适的参数化方案。结果表明:(1)选取的三种积云对流参数化方案在降水和气温模拟结果表现不同。KF方案在降水模拟中表现较好,日降水模拟相关系数为0.73~0.77;GF方案在气温模拟中表现优异,日均气温模拟相关系数为0.71~0.77。(2)三种方案在不同海拔高程的表现差异明显,KF和BMJ方案较好地展现了武陵山—大巴山一带降水与地形的对应关系。在经度剖面上,KF方案2015、2017年6月的降水模拟误差分别为5.96%、6.06%。GF方案则对地形抬升作用的描述过于强烈,导致剖面降雨量变化幅度较大。(3)三种方案模拟结果的水汽来源有所不同,KF方案显示印度洋季风带来充沛水汽,水成物含量少,云水混合比集中,更适合长江中下游流域的降水模拟;GF方案则显示南海暖湿气流较强,水成物含量多,云系发展旺盛,更适合强对流天气频发地区的降水模拟。(4)不同水汽来源对三种积云对流参数化方案模拟结果的精度影响不大。尽管2017年6月较2015年6月受到来自西太平洋的水汽影响更大,但降水模拟结果仍显示KF方案表现最佳。展开更多
文摘为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的FNL全球再分析资料(Final Operational Global Analysis)、先进星载热发射和反射辐射仪全球数字高程模型以及兰州中川机场的实况观测资料,采用中尺度数值天气预报模式(Weather Research and Forecasting Model,WRF)、WRF结合计算流体动力学(Computational Fluid Dynamics,CFD)方法、长短期神经网络(Long Short-Term Memory,LSTM)方法,对2021年4月15-16日兰州中川机场的两次风切变过程进行模拟分析。结果表明:(1)在小于1 km的网格中使用大涡模拟,WRF模式在单个站点风速模拟任务中表现更好,但在近地面水平风场风速模拟效果上,不如WRF模式结合计算流体力学模型方案;(2)对于飞机降落过程中遭遇的两次低空风切变的模拟,WRF-LES和WRF-CFD两种模式都可以模拟出第一次低空风切变,而第二次受传入模式的WRF风速数据值较小的影响,两种模式风速差都没有达到阈值,需要在后续工作中进一步验证;(3)低风速条件(6 m·s^(-1))下,基于LSTM的单变量风速预测模型平均绝对误差基本维持在0.59 m·s^(-1),能较好地把握不同地形与环流背景条件下风速变化的非线性关系,虽然受到WRF误差和观测要素不全的限制,多变量风速预测能在保证平均绝对百分比误差小于6.60%的情况下,以更高的计算效率和泛化能力实现风速预测。本文不仅验证了WRF-CFD和WRF-LES耦合方案在风场和低空风切变预报中的差异,还探讨了基于LSTM的风速预测的可行性和准确性,期望为提高风场模拟精度,缩短精细风场模拟时间提供新的视角和方法。
文摘2020年3月23日08:00(北京时,下同)至26日08:00在云南昆明至老挝万象国际航线途经地区出现一次大范围以冰雹、雷暴大风为主并伴随有局地短时强降水的强对流天气过程。本文基于中尺度数值模式WRFV4.2(Weather Research and Forecasting Model)和美国国家环境预报中心(NCEP)的FNL(Final Operational Global Analysis)资料,模拟了此次强对流天气过程,并利用中国气象局逐小时气象站数据对模拟结果进行可靠性检验。此外,对WRF模式输出的多种物理量进行了诊断分析,以期为云南昆明-老挝万象航线的航空气象安全提供参考。结果表明:(1)WRF模式能够较好地模拟气温、可降水量等要素,但在白天期间近地面风场的模拟值偏大。(2)模拟输出的物理量场可以指示强雷暴天气发生的时间和地点,具有一定的时空预报预警作用,可根据其判断强对流天气对飞行的影响以及影响程度。(3)此次强对流主要是受南支槽东移影响,高层干冷空气叠加在暖湿空气上,形成不稳定结构,被地面辐合线触发而引起。航线途经地区的CAPE(Convective Available Potential Energy)不稳定能量大,水汽条件充沛,9 km高度以下上升运动与下沉运动交替出现,容易对航班造成颠簸。加之0℃层位于3 km左右的高度,航班在飞行时容易造成机身覆冰或遭遇冰雹天气,给飞行安全造成一定的影响。
文摘以往开展的基于长江流域WRF(Weather Research and Forecasting)模式的微物理过程方案参数化优选的研究,没有对长江中下游这一特定区域多个气象要素积云对流参数化方案进行优选。本研究在适合微物理过程、边界层等参数化方案的基础上,选用长江中下游流域为研究对象,针对降水、气温进行三种积云对流参数化方案KF(Kain-Fritsch)、BMJ(Betts-Miller-Janjic)及GF(Grell-Freitas)的优选,并同时从不同海拔、水汽来源两个角度对比分析三种方案产生差异的原因,从而针对不同天气型选择合适的参数化方案。结果表明:(1)选取的三种积云对流参数化方案在降水和气温模拟结果表现不同。KF方案在降水模拟中表现较好,日降水模拟相关系数为0.73~0.77;GF方案在气温模拟中表现优异,日均气温模拟相关系数为0.71~0.77。(2)三种方案在不同海拔高程的表现差异明显,KF和BMJ方案较好地展现了武陵山—大巴山一带降水与地形的对应关系。在经度剖面上,KF方案2015、2017年6月的降水模拟误差分别为5.96%、6.06%。GF方案则对地形抬升作用的描述过于强烈,导致剖面降雨量变化幅度较大。(3)三种方案模拟结果的水汽来源有所不同,KF方案显示印度洋季风带来充沛水汽,水成物含量少,云水混合比集中,更适合长江中下游流域的降水模拟;GF方案则显示南海暖湿气流较强,水成物含量多,云系发展旺盛,更适合强对流天气频发地区的降水模拟。(4)不同水汽来源对三种积云对流参数化方案模拟结果的精度影响不大。尽管2017年6月较2015年6月受到来自西太平洋的水汽影响更大,但降水模拟结果仍显示KF方案表现最佳。