The role of PM_(2.5)(particles with aerodynamic diameters≤_(2.5)μm)deposition in air quality changes over China remains unclear.By using the three-year(2013,2015,and 2017)simulation results of the WRF/CUACE v1.0 mod...The role of PM_(2.5)(particles with aerodynamic diameters≤_(2.5)μm)deposition in air quality changes over China remains unclear.By using the three-year(2013,2015,and 2017)simulation results of the WRF/CUACE v1.0 model from a previous work(Zhang et al.,2021),a non-linear relationship between the deposition of PM_(2.5)and anthropogenic emissions over central-eastern China in cold seasons as well as in different life stages of haze events was unraveled.PM_(2.5)deposition is spatially distributed differently from PM_(2.5)concentrations and anthropogenic emissions over China.The North China Plain(NCP)is typically characterized by higher anthropogenic emissions compared to southern China,such as the middlelow reaches of Yangtze River(MLYR),which includes parts of the Yangtze River Delta and the Midwest.However,PM_(2.5)deposition in the NCP is significantly lower than that in the MLYR region,suggesting that in addition to meteorology and emissions,lower deposition is another important factor in the increase in haze levels.Regional transport of pollution in central-eastern China acts as a moderator of pollution levels in different regions,for example by bringing pollution from the NCP to the MLYR region in cold seasons.It was found that in typical haze events the deposition flux of PM_(2.5)during the removal stages is substantially higher than that in accumulation stages,with most of the PM_(2.5)being transported southward and deposited to the MLYR and Sichuan Basin region,corresponding to a latitude range of about 24°N-31°N.展开更多
基金supported by the National Key Foundation Study Developing Programs(Nos.2019YFC0214801 and 2019YFC0214601)the National Natural Science Foundation of China(Nos.42090030,41975131 and 91744209)the CAMS Basic Research Project(No.2020Y001)。
文摘The role of PM_(2.5)(particles with aerodynamic diameters≤_(2.5)μm)deposition in air quality changes over China remains unclear.By using the three-year(2013,2015,and 2017)simulation results of the WRF/CUACE v1.0 model from a previous work(Zhang et al.,2021),a non-linear relationship between the deposition of PM_(2.5)and anthropogenic emissions over central-eastern China in cold seasons as well as in different life stages of haze events was unraveled.PM_(2.5)deposition is spatially distributed differently from PM_(2.5)concentrations and anthropogenic emissions over China.The North China Plain(NCP)is typically characterized by higher anthropogenic emissions compared to southern China,such as the middlelow reaches of Yangtze River(MLYR),which includes parts of the Yangtze River Delta and the Midwest.However,PM_(2.5)deposition in the NCP is significantly lower than that in the MLYR region,suggesting that in addition to meteorology and emissions,lower deposition is another important factor in the increase in haze levels.Regional transport of pollution in central-eastern China acts as a moderator of pollution levels in different regions,for example by bringing pollution from the NCP to the MLYR region in cold seasons.It was found that in typical haze events the deposition flux of PM_(2.5)during the removal stages is substantially higher than that in accumulation stages,with most of the PM_(2.5)being transported southward and deposited to the MLYR and Sichuan Basin region,corresponding to a latitude range of about 24°N-31°N.