The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(Ca...The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(California Meteorological Model,CALMET) with 100-m horizontal spacing was driven with outputs from the Weather Research and Forecasting(WRF) model to obtain near-surface winds for the 1-year period from 12 September 2003 to 11 September 2004.Results were compared with wind observations at four sites.Traditional statistical scores,including correlation coefficients,standard deviations(SDs) and mean absolute errors(MAEs),indicate that the wind estimates from the WRF/CALMET modeling system are produced reasonably well.The correlation coefficients are relatively large,ranging from 0.5 to 0.7 for the zonal wind component and from 0.75 to 0.85 for the meridional wind component.MAEs for wind speed range from 1.5 to 2.0 m s-1 at 10 meters above ground level(AGL) and from 2.0 to 2.5 m s-1 at 60 m AGL.MAEs for wind direction range from 30 to 40 degrees at both levels.A spectral decomposition of the time series of wind speed shows positive impacts of CALMET in improving the mesoscale winds.Moreover,combining the CALMET model with WRF significantly improves the spatial variability of the simulated wind fields.It can be concluded that the WRF/CALMET modeling system is capable of providing a detailed near-surface wind field,but the physics in the diagnostic CALMET model needs to be further improved.展开更多
[Objective]Precipitation events caused by Super Typhoon Doksuri in Fujian Province were simulated and evaluated based on the WRF model to provide a reference for typhoon precipitation simulation and forecasting in sou...[Objective]Precipitation events caused by Super Typhoon Doksuri in Fujian Province were simulated and evaluated based on the WRF model to provide a reference for typhoon precipitation simulation and forecasting in southeast coastal areas of China.[Methods]The next-generation mesoscale numerical weather prediction model WRF V4.3(The Weather Research and Forecasting Model)was used to simulate the precipitation caused by Typhoon Doksuri in Fujian Province in 2023.Observations from 86 meteorological stations with hourly rainfall records were used to evaluate the model’s performance.Six evaluation indices were used,including the correlation coefficient(R),root mean square error(RMSE),mean absolute error(MAE),equitable threat score(ETS),probability of detection(POD),and false alarm ratio(FAR).[Results](1)The temporal and spatial evolution of precipitation during Typhoon Doksuri was effectively captured by the WRF model.Precipitation intensity increased gradually from July 27 to 29,2023,with the heaviest rainfall concentrated in the northern and eastern coastal areas of Fujian Province.(2)Significant differences in model performance were observed in terms of R,RMSE,and MAE.The largest errors occurred in Putian City,while smaller errors were found in southwestern Fujian Province.The evaluation result of all six indices showed that the WRF model performed best in simulating daily precipitation compared to hourly,three-hourly,six-hourly,and twelve-hourly precipitation.(3)The R95p index indicated that the WRF model successfully captured the overall spatial distribution of extreme precipitation.However,extreme precipitation intensity was overestimated in certain coastal areas.(4)Despite accurately identifying the coastal regions of Fujian as being most affected,the WRF model failed to accurately simulate the spatial distribution and intensity of precipitation.The simulated precipitation centers showed discrepancies when compared with the observed centers.[Conclusion]Although the WRF model underestimated hourly precipitation,it successfully captured the temporal evolution and spatial distribution of rainfall caused by Typhoon Doksuri in Fujian Province.It reproduced the heavy rainfall centers in central Fujian Province,with daily precipitation peaks reaching up to 350 mm.This highlighted the severity of extreme rainfall caused by Typhoon Doksuri.展开更多
Around 30 October 2012, Hurricane Sandy made landfall along the New Jersey shoreline after its completion of extratropical transition and transformation into an extratropical cyclone. The strong gale induced a catastr...Around 30 October 2012, Hurricane Sandy made landfall along the New Jersey shoreline after its completion of extratropical transition and transformation into an extratropical cyclone. The strong gale induced a catastrophic storm surge, and caused 72 death and damage of more than $50 billion. In this paper, the evolutionary process and spatial structure of the Hurricane Sandy during its extratropical transition were investigated by using Weather Research and Forecasting (WRF) version 3.3.1 modeling resuits and National Center for Environmental Prediction (NCEP) Coupled Forecast System model version 2 reanalysis datasets (CFSv2). It is found that during the upper-level trough interaction on 29 October, Sandy gradually fused with a pre-existing mid-latitude low-pressure system, and finished the re-intensification. WRF modeling results showed that the second peak occurred mainly due to the enhanced vertical motion, reduced vertical wind shear as well as the supplement of potential vorticity resulting from trough interaction over the southeast of Great Lakes. The cold continental air from the back of trough was encircled within the warm core system cyclonically, forming the characteristic of warm seclusion.展开更多
The airflow and dispersion of a pollutant in a complex urban area of Beijing, China, were numerically examined by coupling a Computational Fluid Dynamics (CFD) model with a mesoscale weather model. The models used w...The airflow and dispersion of a pollutant in a complex urban area of Beijing, China, were numerically examined by coupling a Computational Fluid Dynamics (CFD) model with a mesoscale weather model. The models used were Open Source Field Operation and Manipulation (OpenFOAM) software package and Weather Research and Forecasting (WRF) model. OpenFOAM was firstly validated against wind-tunnel experiment data. Then, the WRF model was integrated for 42 h starting from 0800 LST 08 September 2009, and the coupled model was used to compute the flow fields at 1000 LST and 1400 LST 09 September 2009. During the WRF-simulated period, a high pressure system was dominant over the Beijing area. The WRF-simulated local circulations were characterized by mountain valley winds, which matched well with observations. Results from the coupled model simulation demonstrated that the airflows around actual buildings were quite different from the ambient wind on the boundary provided by the WRF model, and the pollutant dispersion pattern was complicated under the influence of buildings. A higher concentration level of the pollutant near the surface was found in both the step-down and step-up notches, but the reason for this higher level in each configurations was different: in the former, it was caused by weaker vertical flow, while in the latter it was caused by a downward-shifted vortex. Overall, the results of this study suggest that the coupled WRF-OpenFOAM model is an important tool that can be used for studying and predicting urban flow and dispersions in densely built-up areas.展开更多
Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon clim...Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon climate. The objective of this study is to identify a reasonable configuration of physical parameterization schemes to simulate the precipitation and temperature in this large area. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU) PBL schemes, the WSM3 and WSM5 microphysics schemes, and the Betts-Miller-Janjic (BMJ) and Tiedtke cumulus schemes are compared through simulation of the regional climate of summer 2008. All cases exhibit a similar spatial distribution of temperature as observed, and the spatial correlation coefficients are all higher than 0.95. The cases combining MY J, WSM3/WSM5, and BMJ have the smallest biases of temperature. The choice of PBL scheme has a significant effect on precipitation in such a large area. The cases with MYJ reproduce a better distribution of rain belts, while YSU strongly overestimates the precipitation intensity. The precipitation simulated using WSM3 is similar to that using WSM5. The BMJ cumulus scheme combined with the MYJ PBL scheme has a smaller bias of precipitation. However, the Tiedtke scheme reproduces the precipitation pattern better, especially over the ITCZ.展开更多
The impact of assimilating radiance data from the advanced satellite sensor GMI(GPM microwave imager)for typhoon analyses and forecasts was investigated using both a three-dimensional variational(3DVAR)and a hybrid en...The impact of assimilating radiance data from the advanced satellite sensor GMI(GPM microwave imager)for typhoon analyses and forecasts was investigated using both a three-dimensional variational(3DVAR)and a hybrid ensemble-3DVAR method.The interface of assimilating the radiance for the sensor GMI was established in the Weather Research and Forecasting(WRF)model.The GMI radiance data are assimilated for Typhoon Matmo(2014),Typhoon Chan-hom(2015),Typhoon Meranti(2016),and Typhoon Mangkhut(2018)in the Pacific before their landing.The results show that after assimilating the GMI radiance data under clear sky condition with the 3DVAR method,the wind,temperature,and humidity fields are effectively adjusted,leading to improved forecast skills of the typhoon track with GMI radiance assimilation.The hybrid DA method is able to further adjust the location of the typhoon systematically.The improvement of the track forecast is even more obvious for later forecast periods.In addition,water vapor and hydrometeors are enhanced to some extent,especially with the hybrid method.展开更多
Mesoscale urban environment forecast combined with WRF is a current frontier in international academic. Taking Guangzhou as an example,the new land-use model presented by the present authors,the existing USGS and MODI...Mesoscale urban environment forecast combined with WRF is a current frontier in international academic. Taking Guangzhou as an example,the new land-use model presented by the present authors,the existing USGS and MODIS models in WRF were firstly compared to the remote sensing model in this article.The comparison result shows that the land-use model presented by the authors has the highest similarity with the remote sensing data. Secondly,the new land-use model was used to replace the defaulted land-use data in WRF for simulation. By comparing this simulation results with the WRF results using the defaulted USGS and MODIS model,it was showed that the geographic models have a great impact on the mesoscale environment forecast result. Also,the geographic information model presented in this article shows the best accuracy when comparing with the observation data. Results in this study are going to be an important reference in the contemporary international forefront of mesoscale urban environment studies by WRF.展开更多
Previous studies showed that 4 D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4 D-Var to influence the future path of a tropical cyclone by cal...Previous studies showed that 4 D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4 D-Var to influence the future path of a tropical cyclone by calculating perturbations in WRF simulation. Given the background error covariance matrix, the initial field is improved by the vortex dynamic initialization technique. Our results show that 4 D-Var can be applied to control the trajectory of simulated tropical cyclones by producing "optimal" perturbations. In the numerical simulation experiment of Typhoon Mitag in 2019, after this kind of weather control similar to data assimilation, the tropical cyclone moved obviously,and the damaging wind over the coastline weakened. The prediction results after the initial field modified by 4 D-Var have a great change, and the position of the tropical cyclone moved about 0.5° southeastward after assimilation,which misses the southeast coast of China. Moreover, the damaging wind is also weakened. Since the 4 D-Var is premised on the assumption that the model is perfect and does not consider the model error, then the research plan to consider model error and introduce new methods is discussed in the paper.展开更多
On 21 September 2010, heavy rainfall with a local maximum of 259 mm d-1 occurred near Seoul, South Korea. We examined the ability of the Weather Research and Forecasting (WRF) model in reproducing this disastrous ra...On 21 September 2010, heavy rainfall with a local maximum of 259 mm d-1 occurred near Seoul, South Korea. We examined the ability of the Weather Research and Forecasting (WRF) model in reproducing this disastrous rainfall event and identified the role of two physical processes: planetary boundary layer (PBL) and microphysics (MPS) processes. The WRF model was forced by 6-hourly National Centers for Environmental Prediction (NCEP) Final analysis (FNL) data for 36 hours form 1200 UTC 20 to 0000 UTC 22 September 2010. Twenty-five experiments were performed, consisting of five different PBL schemes--Yonsei University (YSU), Mellor-Yamada-Janjic (MYJ), Quasi Normal Scale Elimination (QNSE), Bougeault and Lacarrere (BouLac), and University of Washington (UW)--and five different MPS schemes--WRF Single- Moment 6-class (WSM6), Goddard, Thompson, Milbrandt 2-moments, and Morrison 2-moments. As expected, there was a specific combination of MPS and PBL schemes that showed good skill in forecasting the precipitation. However, there was no specific PBL or MPS scheme that outperformed the others in all aspects. The experiments with the UW PBL or Thompson MPS scheme showed a relatively small amount of precipitation. Analyses form the sensitivity experiments confirmed that the spatial distribution of the simulated precipitation was dominated by the PBL processes, whereas the MPS processes determined the amount of rainfall. It was also found that the temporal evolution of the precipitation was influenced more by the PBL processes than by the MPS processes.展开更多
An explosive cyclone that took place over the Northwestern Pacific from 12 UTC 18 to 18 UTC 21 November 2007 was investigated.The synoptic situations and structure of this cyclone were documented by using the 1°&...An explosive cyclone that took place over the Northwestern Pacific from 12 UTC 18 to 18 UTC 21 November 2007 was investigated.The synoptic situations and structure of this cyclone were documented by using the 1°×1°final analysis data of the National Center for Environmental Prediction.This cyclone developed explosively around 18 UTC 19 and reached its maximum deepening rate(MDR,1.3 Bergeron)around 06 UTC 20 November 2007.At its MDR moment,the surface cyclone center was located in the downstream of the upper-level trough and northern entrance zone of the upper-level jet.The diagnosis using Zwack-Okossi equation suggested that cyclonic-vorticity advection and warm air advection acted to deepen this cyclone,while adiabatic cooling suppressed its development.In an investigation of this cyclone development,numerical sensitivity results obtained by using the Weather and Research Forecasting model showed that the latent heat release in the lower level had less contribution,whereas the surface sensible and latent fluxes played important roles.With a warmer ocean surface,the cyclone tended to intensify.Two topography tests were designed to examine the mountain influences on the development of this cyclone:removing a mountain and doubling the height of a mountain.Results show that the Changbai Mountains suppressed the development of the cyclone by preventing the southern moisture air from invading the inland.Without the moisture air,no latent heat release occurs when this cyclone passes over the Changbai Mountains.展开更多
Assessing wind energy is a key step in selecting a site for a wind farm. The accuracy of the assessment is essential for the future operation of the wind farm. There are two main methods for assessing wind power: one ...Assessing wind energy is a key step in selecting a site for a wind farm. The accuracy of the assessment is essential for the future operation of the wind farm. There are two main methods for assessing wind power: one is based on observational data and the other relies on mesoscale numerical weather prediction(NWP). In this study, the wind power of the Liaoning coastal wind farm was evaluated using observations from an anemometer tower and simulations by the Weather Research and Forecasting(WRF) model, to see whether the WRF model can produce a valid assessment of the wind power and whether the downscaling process can provide a better evaluation. The paper presents long-term wind data analysis in terms of annual, seasonal, and diurnal variations at the wind farm, which is located on the east coast of Liaoning Province. The results showed that, in spring and summer, the wind speed, wind direction, wind power density, and other main indicators were consistent between the two methods. However, the values of these parameters from the WRF model were significantly higher than the observations from the anemometer tower. Therefore, the causes of the differences between the two methods were further analyzed. There was much more deviation in the original material, National Centers for Environmental Prediction(NCEP) final(FNL) Operational Global Analysis data, in autumn and winter than in spring and summer. As the region is vulnerable to cold-air outbreaks and windy weather in autumn and winter, and the model usually forecasted stronger high or low systems with a longer duration, the predicted wind speed from the WRF model was too large.展开更多
Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45...Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45 km. In order to verify two radiation schemes and four cumulus convection schemes, eight experiments are performed with different combinations of physics parameterization schemes. The results show that eight experiments present reasonable spatial patterns of surface air temperature and precipitation in boreal summer, with the spatial correlation coefficient (COR) between simulated and observed temperature exceeding 0.95, and that between simulated and observed precipitation ranges from 0.65 to 0.82. The four experiments with the RRTMG radiation scheme show a better performance than the other four experiments with the CAM radiation scheme. In the four experiments with the RRTMG radiation scheme, the COR between simulated and observed surface air temperature is about 0.98, and that between simulated and observed precipitation ranges from 0.76 to 0.82. Comparatively, the two experiments using the new Tiedtke cumulus parameterization scheme can simulate better diurnal variation of precipitation in boreal summer than the other six experiments. In particular, for the diurnal cycle of precipitation over land and ocean, the experiment using the RRTMG radiation scheme and the new Tiedtke cumulus convection scheme shows that the peaks of precipitation rate appear at 0400 LST and 1600 LST, in agreement with observation.展开更多
A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale ...A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.展开更多
The impact of topography on heavy rainfall during two rain seasons was investigated in order to explain their mechanisms on rainfall distribution over Rwanda. Weather Research and Forecasting (WRF-ARW) model was used ...The impact of topography on heavy rainfall during two rain seasons was investigated in order to explain their mechanisms on rainfall distribution over Rwanda. Weather Research and Forecasting (WRF-ARW) model was used to study two historical cases of heavy rainfall which took place over Rwanda during two rain seasons, March to May (MAM) and September to December (SOND), from April 7 to 9, 2012 (for MAM) and from October 29 to 31, 2012 (during SOND). The control experiment was done with actual topography, whereas sensitivity experiment was carried out with topography reduced by half. Results show that rainfall distribution over Rwanda significantly changes when topography is reduced. The reduction in topography leads to a decrease in rainfall amounts in both MAM and SOND seasons, with varying magnitudes. This reveals the importance of orography in determining rainfall amounts and distribution over the region. The accumulated rainfall amount from WRF underestimate or overestimate rain gauge stations data by region and by season, but there is good agreement especially in altitude below 1490 m and above 1554 m during April and October respectively. The results may motivate modelling carters to further improve parameterization schemes in the mountainous regions.展开更多
The Weather Research Forecast model (WRF) configured with high resolution and NCEP 1°×1° reanalysis data were used to simulate the development of a tropical deep convection over the Tiwi Islands,norther...The Weather Research Forecast model (WRF) configured with high resolution and NCEP 1°×1° reanalysis data were used to simulate the development of a tropical deep convection over the Tiwi Islands,northern Australia,and to investigate the sensitivity of model results to model configuration and parameterization schemes of microphysical processes.The simulation results were compared with available measurements.The results show that the model can reproduce most of the important characteristics of the observed diurnal evolution of the convection,including the initiation of convection along the sea-breeze front,which is then reinforced by downdraft outflows,merging of cells and the formation of a deep convective system.However,further improvement is needed to simulate more accurately the location and the time for initiation of the deep convective system.Sensitivity tests show that double-nesting schemes are more accurate than the non-nesting schemes in predicting the distribution and intensity of precipitation as far as this particular case is concerned.Additionally,microphysical schemes also have an effect on the simulated amount of precipitation.It is shown that the best agreement is reached between the simulation results and observations when the Purdue Lin scheme is used.展开更多
Lima is the capital of the Republic of Peru. It is the most important city in the country and as other Latin America metropolises have multiple problems, including air pollution due to particulate material above air q...Lima is the capital of the Republic of Peru. It is the most important city in the country and as other Latin America metropolises have multiple problems, including air pollution due to particulate material above air quality standards, emitted by 1.6 million vehicles. The “on-line” coupled model of meteorology and chemistry of transport and meteorological/chemistry, WRF/Chem (Weather and Research Forecasting with Chemistry) has been used in the Lima Metropolitan Area, and validated against data observed at ground level with ten air quality stations of the National Service of Meteorology and Hydrology for the year 2016. The goal of this study was to estimate the concentration of PM2.5 particulate matter in the months of February and July of 2016. In both months, the model satisfactorily predicts temperature and relative humidity. The average observed PM2.5 concentrations in the month of July are higher than in February, probably because the relative humidity in July is greater than the relative humidity in February. In the months of February and July the standard observed deviations of the model have a factor of 2.4 and 3.7 respectively, indicating a greater dispersion in the data of the model. In the month of July, the model captures the characteristics of transport, shows characteristic peaks during peak hours, therefore, the model estimates transport behavior better in July than in February. The quality of the air is strongly influenced by the vehicular transport. The PM2.5 particulate material in February had an average bias that varied from [?13.2 to 4.4 μg/m3] and in July [?9.63 to 11.65 μg/m3] and a normalized average bias in February that varied from [?0.68 to 0.43] and in July of [?0.46 to 0.48].展开更多
To improve the weather forecasting over the Beijing area for the 2008 Olympic Games,a triple-nested(27/9/3km) WRFVar/WRF system with 3-h update cycle was established.Experiments have been done for a convective event t...To improve the weather forecasting over the Beijing area for the 2008 Olympic Games,a triple-nested(27/9/3km) WRFVar/WRF system with 3-h update cycle was established.Experiments have been done for a convective event that occurred on August 1,2006.The results showed that the high-resolution rapid update cycle gave a good precipitation forecast;the tunings of background error statistics(BES) and observation-error statistics in WRFVar improved the skill of the precipitation forecast;the BES for the fine domain(3 km) obtained by interpolation from its parent domain(9 km) can be used in 3 km WRFVar as a reasonable approximation.The user can now save a great deal of work related to the derivation of the fine mesh BES from the forecast over a period of time;the rapid update cycle with 3-h frequency has satisfied the forecast,and the update cycle with 1-h frequency was not necessary.展开更多
The role of PM_(2.5)(particles with aerodynamic diameters≤_(2.5)μm)deposition in air quality changes over China remains unclear.By using the three-year(2013,2015,and 2017)simulation results of the WRF/CUACE v1.0 mod...The role of PM_(2.5)(particles with aerodynamic diameters≤_(2.5)μm)deposition in air quality changes over China remains unclear.By using the three-year(2013,2015,and 2017)simulation results of the WRF/CUACE v1.0 model from a previous work(Zhang et al.,2021),a non-linear relationship between the deposition of PM_(2.5)and anthropogenic emissions over central-eastern China in cold seasons as well as in different life stages of haze events was unraveled.PM_(2.5)deposition is spatially distributed differently from PM_(2.5)concentrations and anthropogenic emissions over China.The North China Plain(NCP)is typically characterized by higher anthropogenic emissions compared to southern China,such as the middlelow reaches of Yangtze River(MLYR),which includes parts of the Yangtze River Delta and the Midwest.However,PM_(2.5)deposition in the NCP is significantly lower than that in the MLYR region,suggesting that in addition to meteorology and emissions,lower deposition is another important factor in the increase in haze levels.Regional transport of pollution in central-eastern China acts as a moderator of pollution levels in different regions,for example by bringing pollution from the NCP to the MLYR region in cold seasons.It was found that in typical haze events the deposition flux of PM_(2.5)during the removal stages is substantially higher than that in accumulation stages,with most of the PM_(2.5)being transported southward and deposited to the MLYR and Sichuan Basin region,corresponding to a latitude range of about 24°N-31°N.展开更多
In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-gue...In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-guess potential temperature reference profile on the Madden-Julian oscillation(MJO)propagation and structure.This study diagnosed the MJO active phase composites of the MJO-filtered outgoing longwave radiation(OLR)during the December-to-February(DJF)period of 2006-2016 over the Indian Ocean(IO),Maritime Continent(MC),and western Pacific(WP).The results show that the MJO-filtered OLR intensity,propagation pattern,and MJO classification(standing,jumping,and propagating clusters)are sensitive to theα-value,but the phase speeds of propagating MJOs are not.Overall,with an increasingα-value,the simulated MJO-filtered OLR intensity increases,and the simulated propagation pattern is improved.Results also show that the intensity and propagation pattern of an eastward-propagating MJO are associated with MJO circulation structures and thermodynamic structures.Asαincreases,the front Walker cell and the low-level easterly anomaly are enhanced,which premoistens the lower troposphere and triggers more active shallow and congestus clouds.The enhanced shallow and congestus convection preconditions the lower to middle troposphere,accelerating the transition from congestus to deep convection,thereby facilitating eastward propagation of the MJO.Therefore,the simulated MJO tends to transfer from standing to eastward propagating asαincreases.In summary,increasing theα-value is a possible way to improve the simulation of the structure and propagation of the MJO.展开更多
[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar ener...[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar energy resources in pho-tovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan, Fushan and Juxian in 1988-2008. [Result] Solar energy in northern regions in Shandong proved most abundant, which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°, decreasing by 2°-3° compared with local latitude. Total solar radiation received by the slope with optimal angle of tilt exceeded 1 600 kw.h/(m2.a), increasing by 16% compared with horizontal planes. The maximal irradiance concluded by WRF in different regions tended to be volatile in 1 020-1 060 W/m2. [Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province.展开更多
基金National Public Benefit Research Foundation of China (2008416048GYHY201006035)
文摘The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(California Meteorological Model,CALMET) with 100-m horizontal spacing was driven with outputs from the Weather Research and Forecasting(WRF) model to obtain near-surface winds for the 1-year period from 12 September 2003 to 11 September 2004.Results were compared with wind observations at four sites.Traditional statistical scores,including correlation coefficients,standard deviations(SDs) and mean absolute errors(MAEs),indicate that the wind estimates from the WRF/CALMET modeling system are produced reasonably well.The correlation coefficients are relatively large,ranging from 0.5 to 0.7 for the zonal wind component and from 0.75 to 0.85 for the meridional wind component.MAEs for wind speed range from 1.5 to 2.0 m s-1 at 10 meters above ground level(AGL) and from 2.0 to 2.5 m s-1 at 60 m AGL.MAEs for wind direction range from 30 to 40 degrees at both levels.A spectral decomposition of the time series of wind speed shows positive impacts of CALMET in improving the mesoscale winds.Moreover,combining the CALMET model with WRF significantly improves the spatial variability of the simulated wind fields.It can be concluded that the WRF/CALMET modeling system is capable of providing a detailed near-surface wind field,but the physics in the diagnostic CALMET model needs to be further improved.
文摘[Objective]Precipitation events caused by Super Typhoon Doksuri in Fujian Province were simulated and evaluated based on the WRF model to provide a reference for typhoon precipitation simulation and forecasting in southeast coastal areas of China.[Methods]The next-generation mesoscale numerical weather prediction model WRF V4.3(The Weather Research and Forecasting Model)was used to simulate the precipitation caused by Typhoon Doksuri in Fujian Province in 2023.Observations from 86 meteorological stations with hourly rainfall records were used to evaluate the model’s performance.Six evaluation indices were used,including the correlation coefficient(R),root mean square error(RMSE),mean absolute error(MAE),equitable threat score(ETS),probability of detection(POD),and false alarm ratio(FAR).[Results](1)The temporal and spatial evolution of precipitation during Typhoon Doksuri was effectively captured by the WRF model.Precipitation intensity increased gradually from July 27 to 29,2023,with the heaviest rainfall concentrated in the northern and eastern coastal areas of Fujian Province.(2)Significant differences in model performance were observed in terms of R,RMSE,and MAE.The largest errors occurred in Putian City,while smaller errors were found in southwestern Fujian Province.The evaluation result of all six indices showed that the WRF model performed best in simulating daily precipitation compared to hourly,three-hourly,six-hourly,and twelve-hourly precipitation.(3)The R95p index indicated that the WRF model successfully captured the overall spatial distribution of extreme precipitation.However,extreme precipitation intensity was overestimated in certain coastal areas.(4)Despite accurately identifying the coastal regions of Fujian as being most affected,the WRF model failed to accurately simulate the spatial distribution and intensity of precipitation.The simulated precipitation centers showed discrepancies when compared with the observed centers.[Conclusion]Although the WRF model underestimated hourly precipitation,it successfully captured the temporal evolution and spatial distribution of rainfall caused by Typhoon Doksuri in Fujian Province.It reproduced the heavy rainfall centers in central Fujian Province,with daily precipitation peaks reaching up to 350 mm.This highlighted the severity of extreme rainfall caused by Typhoon Doksuri.
基金supported by the National Natural Science Foundation of China under the grant number of 41275049the open project of Laboratory of Physical Oceanography, Ocean University of China
文摘Around 30 October 2012, Hurricane Sandy made landfall along the New Jersey shoreline after its completion of extratropical transition and transformation into an extratropical cyclone. The strong gale induced a catastrophic storm surge, and caused 72 death and damage of more than $50 billion. In this paper, the evolutionary process and spatial structure of the Hurricane Sandy during its extratropical transition were investigated by using Weather Research and Forecasting (WRF) version 3.3.1 modeling resuits and National Center for Environmental Prediction (NCEP) Coupled Forecast System model version 2 reanalysis datasets (CFSv2). It is found that during the upper-level trough interaction on 29 October, Sandy gradually fused with a pre-existing mid-latitude low-pressure system, and finished the re-intensification. WRF modeling results showed that the second peak occurred mainly due to the enhanced vertical motion, reduced vertical wind shear as well as the supplement of potential vorticity resulting from trough interaction over the southeast of Great Lakes. The cold continental air from the back of trough was encircled within the warm core system cyclonically, forming the characteristic of warm seclusion.
基金supported by the Public Welfare Special Fund Program(Meteorology)of the Chinese Ministry of Finance under Grant No.GYHY201106033
文摘The airflow and dispersion of a pollutant in a complex urban area of Beijing, China, were numerically examined by coupling a Computational Fluid Dynamics (CFD) model with a mesoscale weather model. The models used were Open Source Field Operation and Manipulation (OpenFOAM) software package and Weather Research and Forecasting (WRF) model. OpenFOAM was firstly validated against wind-tunnel experiment data. Then, the WRF model was integrated for 42 h starting from 0800 LST 08 September 2009, and the coupled model was used to compute the flow fields at 1000 LST and 1400 LST 09 September 2009. During the WRF-simulated period, a high pressure system was dominant over the Beijing area. The WRF-simulated local circulations were characterized by mountain valley winds, which matched well with observations. Results from the coupled model simulation demonstrated that the airflows around actual buildings were quite different from the ambient wind on the boundary provided by the WRF model, and the pollutant dispersion pattern was complicated under the influence of buildings. A higher concentration level of the pollutant near the surface was found in both the step-down and step-up notches, but the reason for this higher level in each configurations was different: in the former, it was caused by weaker vertical flow, while in the latter it was caused by a downward-shifted vortex. Overall, the results of this study suggest that the coupled WRF-OpenFOAM model is an important tool that can be used for studying and predicting urban flow and dispersions in densely built-up areas.
基金funded by the National Natural Science Foundation of China[General Project,grant number 41275108]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010404]
文摘Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon climate. The objective of this study is to identify a reasonable configuration of physical parameterization schemes to simulate the precipitation and temperature in this large area. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU) PBL schemes, the WSM3 and WSM5 microphysics schemes, and the Betts-Miller-Janjic (BMJ) and Tiedtke cumulus schemes are compared through simulation of the regional climate of summer 2008. All cases exhibit a similar spatial distribution of temperature as observed, and the spatial correlation coefficients are all higher than 0.95. The cases combining MY J, WSM3/WSM5, and BMJ have the smallest biases of temperature. The choice of PBL scheme has a significant effect on precipitation in such a large area. The cases with MYJ reproduce a better distribution of rain belts, while YSU strongly overestimates the precipitation intensity. The precipitation simulated using WSM3 is similar to that using WSM5. The BMJ cumulus scheme combined with the MYJ PBL scheme has a smaller bias of precipitation. However, the Tiedtke scheme reproduces the precipitation pattern better, especially over the ITCZ.
基金the Chinese National Natural Science Foundation of China(G41805016)the Chinese National Key R&D Program of China(2018YFC1506404)+3 种基金the Chinese National Natural Science Founda-tion of China(G41805070)the Chinese National Key R&D Program of China(2018YFC1506603)the research project of Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province in China(SZKT201901,SZKT201904)the research project of the Institute of Atmospheric Environment,China Meteorological Administration,Shenyang in China(2020SYIAE07,2020SYIAE02)。
文摘The impact of assimilating radiance data from the advanced satellite sensor GMI(GPM microwave imager)for typhoon analyses and forecasts was investigated using both a three-dimensional variational(3DVAR)and a hybrid ensemble-3DVAR method.The interface of assimilating the radiance for the sensor GMI was established in the Weather Research and Forecasting(WRF)model.The GMI radiance data are assimilated for Typhoon Matmo(2014),Typhoon Chan-hom(2015),Typhoon Meranti(2016),and Typhoon Mangkhut(2018)in the Pacific before their landing.The results show that after assimilating the GMI radiance data under clear sky condition with the 3DVAR method,the wind,temperature,and humidity fields are effectively adjusted,leading to improved forecast skills of the typhoon track with GMI radiance assimilation.The hybrid DA method is able to further adjust the location of the typhoon systematically.The improvement of the track forecast is even more obvious for later forecast periods.In addition,water vapor and hydrometeors are enhanced to some extent,especially with the hybrid method.
基金Sponsored by the Key Project of National Natural Science Foundation of China(Grant No.51138004)the National Natural Science Foundation of China(Grant No.51278262)
文摘Mesoscale urban environment forecast combined with WRF is a current frontier in international academic. Taking Guangzhou as an example,the new land-use model presented by the present authors,the existing USGS and MODIS models in WRF were firstly compared to the remote sensing model in this article.The comparison result shows that the land-use model presented by the authors has the highest similarity with the remote sensing data. Secondly,the new land-use model was used to replace the defaulted land-use data in WRF for simulation. By comparing this simulation results with the WRF results using the defaulted USGS and MODIS model,it was showed that the geographic models have a great impact on the mesoscale environment forecast result. Also,the geographic information model presented in this article shows the best accuracy when comparing with the observation data. Results in this study are going to be an important reference in the contemporary international forefront of mesoscale urban environment studies by WRF.
基金National Natural Science Foundation of China(41405062, 41775017)。
文摘Previous studies showed that 4 D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4 D-Var to influence the future path of a tropical cyclone by calculating perturbations in WRF simulation. Given the background error covariance matrix, the initial field is improved by the vortex dynamic initialization technique. Our results show that 4 D-Var can be applied to control the trajectory of simulated tropical cyclones by producing "optimal" perturbations. In the numerical simulation experiment of Typhoon Mitag in 2019, after this kind of weather control similar to data assimilation, the tropical cyclone moved obviously,and the damaging wind over the coastline weakened. The prediction results after the initial field modified by 4 D-Var have a great change, and the position of the tropical cyclone moved about 0.5° southeastward after assimilation,which misses the southeast coast of China. Moreover, the damaging wind is also weakened. Since the 4 D-Var is premised on the assumption that the model is perfect and does not consider the model error, then the research plan to consider model error and introduce new methods is discussed in the paper.
基金an R&D project on the development of global numerical weather prediction systems at the Korea Institute of Atmospheric Prediction Systems (KIAPS)Grant CATER 2012-3035 funded by the Korea Meteorological Administration (KMA)
文摘On 21 September 2010, heavy rainfall with a local maximum of 259 mm d-1 occurred near Seoul, South Korea. We examined the ability of the Weather Research and Forecasting (WRF) model in reproducing this disastrous rainfall event and identified the role of two physical processes: planetary boundary layer (PBL) and microphysics (MPS) processes. The WRF model was forced by 6-hourly National Centers for Environmental Prediction (NCEP) Final analysis (FNL) data for 36 hours form 1200 UTC 20 to 0000 UTC 22 September 2010. Twenty-five experiments were performed, consisting of five different PBL schemes--Yonsei University (YSU), Mellor-Yamada-Janjic (MYJ), Quasi Normal Scale Elimination (QNSE), Bougeault and Lacarrere (BouLac), and University of Washington (UW)--and five different MPS schemes--WRF Single- Moment 6-class (WSM6), Goddard, Thompson, Milbrandt 2-moments, and Morrison 2-moments. As expected, there was a specific combination of MPS and PBL schemes that showed good skill in forecasting the precipitation. However, there was no specific PBL or MPS scheme that outperformed the others in all aspects. The experiments with the UW PBL or Thompson MPS scheme showed a relatively small amount of precipitation. Analyses form the sensitivity experiments confirmed that the spatial distribution of the simulated precipitation was dominated by the PBL processes, whereas the MPS processes determined the amount of rainfall. It was also found that the temporal evolution of the precipitation was influenced more by the PBL processes than by the MPS processes.
基金This study is supported by the National Key R&D Program of China(Nos.2017YFC1404100 and 2017YFC 1404101)the National Natural Science Foundation of China(Nos.41775042 and 41275049).
文摘An explosive cyclone that took place over the Northwestern Pacific from 12 UTC 18 to 18 UTC 21 November 2007 was investigated.The synoptic situations and structure of this cyclone were documented by using the 1°×1°final analysis data of the National Center for Environmental Prediction.This cyclone developed explosively around 18 UTC 19 and reached its maximum deepening rate(MDR,1.3 Bergeron)around 06 UTC 20 November 2007.At its MDR moment,the surface cyclone center was located in the downstream of the upper-level trough and northern entrance zone of the upper-level jet.The diagnosis using Zwack-Okossi equation suggested that cyclonic-vorticity advection and warm air advection acted to deepen this cyclone,while adiabatic cooling suppressed its development.In an investigation of this cyclone development,numerical sensitivity results obtained by using the Weather and Research Forecasting model showed that the latent heat release in the lower level had less contribution,whereas the surface sensible and latent fluxes played important roles.With a warmer ocean surface,the cyclone tended to intensify.Two topography tests were designed to examine the mountain influences on the development of this cyclone:removing a mountain and doubling the height of a mountain.Results show that the Changbai Mountains suppressed the development of the cyclone by preventing the southern moisture air from invading the inland.Without the moisture air,no latent heat release occurs when this cyclone passes over the Changbai Mountains.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA05110305)
文摘Assessing wind energy is a key step in selecting a site for a wind farm. The accuracy of the assessment is essential for the future operation of the wind farm. There are two main methods for assessing wind power: one is based on observational data and the other relies on mesoscale numerical weather prediction(NWP). In this study, the wind power of the Liaoning coastal wind farm was evaluated using observations from an anemometer tower and simulations by the Weather Research and Forecasting(WRF) model, to see whether the WRF model can produce a valid assessment of the wind power and whether the downscaling process can provide a better evaluation. The paper presents long-term wind data analysis in terms of annual, seasonal, and diurnal variations at the wind farm, which is located on the east coast of Liaoning Province. The results showed that, in spring and summer, the wind speed, wind direction, wind power density, and other main indicators were consistent between the two methods. However, the values of these parameters from the WRF model were significantly higher than the observations from the anemometer tower. Therefore, the causes of the differences between the two methods were further analyzed. There was much more deviation in the original material, National Centers for Environmental Prediction(NCEP) final(FNL) Operational Global Analysis data, in autumn and winter than in spring and summer. As the region is vulnerable to cold-air outbreaks and windy weather in autumn and winter, and the model usually forecasted stronger high or low systems with a longer duration, the predicted wind speed from the WRF model was too large.
基金supported by the National Key Research Program of China [grant number 2016YFB0200805)the National Natural Science Foundation of China [grant number 41575089]
文摘Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45 km. In order to verify two radiation schemes and four cumulus convection schemes, eight experiments are performed with different combinations of physics parameterization schemes. The results show that eight experiments present reasonable spatial patterns of surface air temperature and precipitation in boreal summer, with the spatial correlation coefficient (COR) between simulated and observed temperature exceeding 0.95, and that between simulated and observed precipitation ranges from 0.65 to 0.82. The four experiments with the RRTMG radiation scheme show a better performance than the other four experiments with the CAM radiation scheme. In the four experiments with the RRTMG radiation scheme, the COR between simulated and observed surface air temperature is about 0.98, and that between simulated and observed precipitation ranges from 0.76 to 0.82. Comparatively, the two experiments using the new Tiedtke cumulus parameterization scheme can simulate better diurnal variation of precipitation in boreal summer than the other six experiments. In particular, for the diurnal cycle of precipitation over land and ocean, the experiment using the RRTMG radiation scheme and the new Tiedtke cumulus convection scheme shows that the peaks of precipitation rate appear at 0400 LST and 1600 LST, in agreement with observation.
基金jointly supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences(Grant No.KZCX2EW203)the National Key Basic Research Program of China(Grant No.2013CB430105)the National Department of Public Benefit Research Foundation(Grant No.GYHY201006031)
文摘A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.
文摘The impact of topography on heavy rainfall during two rain seasons was investigated in order to explain their mechanisms on rainfall distribution over Rwanda. Weather Research and Forecasting (WRF-ARW) model was used to study two historical cases of heavy rainfall which took place over Rwanda during two rain seasons, March to May (MAM) and September to December (SOND), from April 7 to 9, 2012 (for MAM) and from October 29 to 31, 2012 (during SOND). The control experiment was done with actual topography, whereas sensitivity experiment was carried out with topography reduced by half. Results show that rainfall distribution over Rwanda significantly changes when topography is reduced. The reduction in topography leads to a decrease in rainfall amounts in both MAM and SOND seasons, with varying magnitudes. This reveals the importance of orography in determining rainfall amounts and distribution over the region. The accumulated rainfall amount from WRF underestimate or overestimate rain gauge stations data by region and by season, but there is good agreement especially in altitude below 1490 m and above 1554 m during April and October respectively. The results may motivate modelling carters to further improve parameterization schemes in the mountainous regions.
基金National Natural Science Foundation (40675005)Science Foundation (QD52)Natural Science Foundation for High Education in Jiangsu Province (06KJB170047)
文摘The Weather Research Forecast model (WRF) configured with high resolution and NCEP 1°×1° reanalysis data were used to simulate the development of a tropical deep convection over the Tiwi Islands,northern Australia,and to investigate the sensitivity of model results to model configuration and parameterization schemes of microphysical processes.The simulation results were compared with available measurements.The results show that the model can reproduce most of the important characteristics of the observed diurnal evolution of the convection,including the initiation of convection along the sea-breeze front,which is then reinforced by downdraft outflows,merging of cells and the formation of a deep convective system.However,further improvement is needed to simulate more accurately the location and the time for initiation of the deep convective system.Sensitivity tests show that double-nesting schemes are more accurate than the non-nesting schemes in predicting the distribution and intensity of precipitation as far as this particular case is concerned.Additionally,microphysical schemes also have an effect on the simulated amount of precipitation.It is shown that the best agreement is reached between the simulation results and observations when the Purdue Lin scheme is used.
文摘Lima is the capital of the Republic of Peru. It is the most important city in the country and as other Latin America metropolises have multiple problems, including air pollution due to particulate material above air quality standards, emitted by 1.6 million vehicles. The “on-line” coupled model of meteorology and chemistry of transport and meteorological/chemistry, WRF/Chem (Weather and Research Forecasting with Chemistry) has been used in the Lima Metropolitan Area, and validated against data observed at ground level with ten air quality stations of the National Service of Meteorology and Hydrology for the year 2016. The goal of this study was to estimate the concentration of PM2.5 particulate matter in the months of February and July of 2016. In both months, the model satisfactorily predicts temperature and relative humidity. The average observed PM2.5 concentrations in the month of July are higher than in February, probably because the relative humidity in July is greater than the relative humidity in February. In the months of February and July the standard observed deviations of the model have a factor of 2.4 and 3.7 respectively, indicating a greater dispersion in the data of the model. In the month of July, the model captures the characteristics of transport, shows characteristic peaks during peak hours, therefore, the model estimates transport behavior better in July than in February. The quality of the air is strongly influenced by the vehicular transport. The PM2.5 particulate material in February had an average bias that varied from [?13.2 to 4.4 μg/m3] and in July [?9.63 to 11.65 μg/m3] and a normalized average bias in February that varied from [?0.68 to 0.43] and in July of [?0.46 to 0.48].
文摘To improve the weather forecasting over the Beijing area for the 2008 Olympic Games,a triple-nested(27/9/3km) WRFVar/WRF system with 3-h update cycle was established.Experiments have been done for a convective event that occurred on August 1,2006.The results showed that the high-resolution rapid update cycle gave a good precipitation forecast;the tunings of background error statistics(BES) and observation-error statistics in WRFVar improved the skill of the precipitation forecast;the BES for the fine domain(3 km) obtained by interpolation from its parent domain(9 km) can be used in 3 km WRFVar as a reasonable approximation.The user can now save a great deal of work related to the derivation of the fine mesh BES from the forecast over a period of time;the rapid update cycle with 3-h frequency has satisfied the forecast,and the update cycle with 1-h frequency was not necessary.
基金supported by the National Key Foundation Study Developing Programs(Nos.2019YFC0214801 and 2019YFC0214601)the National Natural Science Foundation of China(Nos.42090030,41975131 and 91744209)the CAMS Basic Research Project(No.2020Y001)。
文摘The role of PM_(2.5)(particles with aerodynamic diameters≤_(2.5)μm)deposition in air quality changes over China remains unclear.By using the three-year(2013,2015,and 2017)simulation results of the WRF/CUACE v1.0 model from a previous work(Zhang et al.,2021),a non-linear relationship between the deposition of PM_(2.5)and anthropogenic emissions over central-eastern China in cold seasons as well as in different life stages of haze events was unraveled.PM_(2.5)deposition is spatially distributed differently from PM_(2.5)concentrations and anthropogenic emissions over China.The North China Plain(NCP)is typically characterized by higher anthropogenic emissions compared to southern China,such as the middlelow reaches of Yangtze River(MLYR),which includes parts of the Yangtze River Delta and the Midwest.However,PM_(2.5)deposition in the NCP is significantly lower than that in the MLYR region,suggesting that in addition to meteorology and emissions,lower deposition is another important factor in the increase in haze levels.Regional transport of pollution in central-eastern China acts as a moderator of pollution levels in different regions,for example by bringing pollution from the NCP to the MLYR region in cold seasons.It was found that in typical haze events the deposition flux of PM_(2.5)during the removal stages is substantially higher than that in accumulation stages,with most of the PM_(2.5)being transported southward and deposited to the MLYR and Sichuan Basin region,corresponding to a latitude range of about 24°N-31°N.
基金supported by the National Natural Science Foundation of China(Grant Nos.41975090,U2242201,42075077)the Natural Science Foundation of Hunan Province,China(2022JJ20043)the Science and Technology Innovation Program of Hunan Province,China(2022RC1239)。
文摘In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-guess potential temperature reference profile on the Madden-Julian oscillation(MJO)propagation and structure.This study diagnosed the MJO active phase composites of the MJO-filtered outgoing longwave radiation(OLR)during the December-to-February(DJF)period of 2006-2016 over the Indian Ocean(IO),Maritime Continent(MC),and western Pacific(WP).The results show that the MJO-filtered OLR intensity,propagation pattern,and MJO classification(standing,jumping,and propagating clusters)are sensitive to theα-value,but the phase speeds of propagating MJOs are not.Overall,with an increasingα-value,the simulated MJO-filtered OLR intensity increases,and the simulated propagation pattern is improved.Results also show that the intensity and propagation pattern of an eastward-propagating MJO are associated with MJO circulation structures and thermodynamic structures.Asαincreases,the front Walker cell and the low-level easterly anomaly are enhanced,which premoistens the lower troposphere and triggers more active shallow and congestus clouds.The enhanced shallow and congestus convection preconditions the lower to middle troposphere,accelerating the transition from congestus to deep convection,thereby facilitating eastward propagation of the MJO.Therefore,the simulated MJO tends to transfer from standing to eastward propagating asαincreases.In summary,increasing theα-value is a possible way to improve the simulation of the structure and propagation of the MJO.
基金Supported by Shandong Meteorological Bureau Key Project (2010sdqxj105)~~
文摘[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar energy resources in pho-tovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan, Fushan and Juxian in 1988-2008. [Result] Solar energy in northern regions in Shandong proved most abundant, which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°, decreasing by 2°-3° compared with local latitude. Total solar radiation received by the slope with optimal angle of tilt exceeded 1 600 kw.h/(m2.a), increasing by 16% compared with horizontal planes. The maximal irradiance concluded by WRF in different regions tended to be volatile in 1 020-1 060 W/m2. [Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province.