期刊文献+
共找到984篇文章
< 1 2 50 >
每页显示 20 50 100
Simulating Urban Flow and Dispersion in Beijing by Coupling a CFD Model with the WRF Model 被引量:13
1
作者 缪育聪 刘树华 +3 位作者 陈笔澄 张碧辉 王姝 李书严 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第6期1663-1678,共16页
The airflow and dispersion of a pollutant in a complex urban area of Beijing, China, were numerically examined by coupling a Computational Fluid Dynamics (CFD) model with a mesoscale weather model. The models used w... The airflow and dispersion of a pollutant in a complex urban area of Beijing, China, were numerically examined by coupling a Computational Fluid Dynamics (CFD) model with a mesoscale weather model. The models used were Open Source Field Operation and Manipulation (OpenFOAM) software package and Weather Research and Forecasting (WRF) model. OpenFOAM was firstly validated against wind-tunnel experiment data. Then, the WRF model was integrated for 42 h starting from 0800 LST 08 September 2009, and the coupled model was used to compute the flow fields at 1000 LST and 1400 LST 09 September 2009. During the WRF-simulated period, a high pressure system was dominant over the Beijing area. The WRF-simulated local circulations were characterized by mountain valley winds, which matched well with observations. Results from the coupled model simulation demonstrated that the airflows around actual buildings were quite different from the ambient wind on the boundary provided by the WRF model, and the pollutant dispersion pattern was complicated under the influence of buildings. A higher concentration level of the pollutant near the surface was found in both the step-down and step-up notches, but the reason for this higher level in each configurations was different: in the former, it was caused by weaker vertical flow, while in the latter it was caused by a downward-shifted vortex. Overall, the results of this study suggest that the coupled WRF-OpenFOAM model is an important tool that can be used for studying and predicting urban flow and dispersions in densely built-up areas. 展开更多
关键词 wrf model CFD model OPENFOAM dispersion.
在线阅读 下载PDF
Intercomparison of different physics schemes in the WRF model over the Asian summer monsoon region 被引量:4
2
作者 QUE Lin-Jing QUE Wei-Lun FENG Jin-Ming 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第3期169-177,共9页
Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon clim... Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon climate. The objective of this study is to identify a reasonable configuration of physical parameterization schemes to simulate the precipitation and temperature in this large area. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU) PBL schemes, the WSM3 and WSM5 microphysics schemes, and the Betts-Miller-Janjic (BMJ) and Tiedtke cumulus schemes are compared through simulation of the regional climate of summer 2008. All cases exhibit a similar spatial distribution of temperature as observed, and the spatial correlation coefficients are all higher than 0.95. The cases combining MY J, WSM3/WSM5, and BMJ have the smallest biases of temperature. The choice of PBL scheme has a significant effect on precipitation in such a large area. The cases with MYJ reproduce a better distribution of rain belts, while YSU strongly overestimates the precipitation intensity. The precipitation simulated using WSM3 is similar to that using WSM5. The BMJ cumulus scheme combined with the MYJ PBL scheme has a smaller bias of precipitation. However, the Tiedtke scheme reproduces the precipitation pattern better, especially over the ITCZ. 展开更多
关键词 wrf model PRECIPITATION temperature PBL scheme microphysics scheme cumulus parameterizationscheme
在线阅读 下载PDF
Numerical Simulations of Heavy Rainfall over Central Korea on 21 September 2010 Using the WRF Model 被引量:1
3
作者 Ui-Yong BYUN Jinkyu HONG +1 位作者 Song-You HONG Hyeyum Hailey SHIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期855-869,共15页
On 21 September 2010, heavy rainfall with a local maximum of 259 mm d-1 occurred near Seoul, South Korea. We examined the ability of the Weather Research and Forecasting (WRF) model in reproducing this disastrous ra... On 21 September 2010, heavy rainfall with a local maximum of 259 mm d-1 occurred near Seoul, South Korea. We examined the ability of the Weather Research and Forecasting (WRF) model in reproducing this disastrous rainfall event and identified the role of two physical processes: planetary boundary layer (PBL) and microphysics (MPS) processes. The WRF model was forced by 6-hourly National Centers for Environmental Prediction (NCEP) Final analysis (FNL) data for 36 hours form 1200 UTC 20 to 0000 UTC 22 September 2010. Twenty-five experiments were performed, consisting of five different PBL schemes--Yonsei University (YSU), Mellor-Yamada-Janjic (MYJ), Quasi Normal Scale Elimination (QNSE), Bougeault and Lacarrere (BouLac), and University of Washington (UW)--and five different MPS schemes--WRF Single- Moment 6-class (WSM6), Goddard, Thompson, Milbrandt 2-moments, and Morrison 2-moments. As expected, there was a specific combination of MPS and PBL schemes that showed good skill in forecasting the precipitation. However, there was no specific PBL or MPS scheme that outperformed the others in all aspects. The experiments with the UW PBL or Thompson MPS scheme showed a relatively small amount of precipitation. Analyses form the sensitivity experiments confirmed that the spatial distribution of the simulated precipitation was dominated by the PBL processes, whereas the MPS processes determined the amount of rainfall. It was also found that the temporal evolution of the precipitation was influenced more by the PBL processes than by the MPS processes. 展开更多
关键词 heavy rainfall wrf model MICROPHYSICS planetary boundary layer
在线阅读 下载PDF
Move a Tropical Cyclone with 4D-Var and Vortex Dynamical Initialization in WRF Model 被引量:2
4
作者 WANG Ting PENG Yue-hua +2 位作者 ZHANG Bang-lin LEUNG Jeremy Cheuk-Hin SHI Wei-lai 《Journal of Tropical Meteorology》 SCIE 2021年第3期191-200,共10页
Previous studies showed that 4 D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4 D-Var to influence the future path of a tropical cyclone by cal... Previous studies showed that 4 D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4 D-Var to influence the future path of a tropical cyclone by calculating perturbations in WRF simulation. Given the background error covariance matrix, the initial field is improved by the vortex dynamic initialization technique. Our results show that 4 D-Var can be applied to control the trajectory of simulated tropical cyclones by producing "optimal" perturbations. In the numerical simulation experiment of Typhoon Mitag in 2019, after this kind of weather control similar to data assimilation, the tropical cyclone moved obviously,and the damaging wind over the coastline weakened. The prediction results after the initial field modified by 4 D-Var have a great change, and the position of the tropical cyclone moved about 0.5° southeastward after assimilation,which misses the southeast coast of China. Moreover, the damaging wind is also weakened. Since the 4 D-Var is premised on the assumption that the model is perfect and does not consider the model error, then the research plan to consider model error and introduce new methods is discussed in the paper. 展开更多
关键词 4D-VAR weather control Typhoon Mitag wrf model vortex dynamical initialization
在线阅读 下载PDF
Analysis of Wind Power Assessment Based on the WRF Model 被引量:1
5
作者 LI Ji-Hang GUO Zhen-Hai +2 位作者 WANG Hui-Jun LI Ji-Hang WANG Hui-Jun 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第2期126-131,共6页
Assessing wind energy is a key step in selecting a site for a wind farm. The accuracy of the assessment is essential for the future operation of the wind farm. There are two main methods for assessing wind power: one ... Assessing wind energy is a key step in selecting a site for a wind farm. The accuracy of the assessment is essential for the future operation of the wind farm. There are two main methods for assessing wind power: one is based on observational data and the other relies on mesoscale numerical weather prediction(NWP). In this study, the wind power of the Liaoning coastal wind farm was evaluated using observations from an anemometer tower and simulations by the Weather Research and Forecasting(WRF) model, to see whether the WRF model can produce a valid assessment of the wind power and whether the downscaling process can provide a better evaluation. The paper presents long-term wind data analysis in terms of annual, seasonal, and diurnal variations at the wind farm, which is located on the east coast of Liaoning Province. The results showed that, in spring and summer, the wind speed, wind direction, wind power density, and other main indicators were consistent between the two methods. However, the values of these parameters from the WRF model were significantly higher than the observations from the anemometer tower. Therefore, the causes of the differences between the two methods were further analyzed. There was much more deviation in the original material, National Centers for Environmental Prediction(NCEP) final(FNL) Operational Global Analysis data, in autumn and winter than in spring and summer. As the region is vulnerable to cold-air outbreaks and windy weather in autumn and winter, and the model usually forecasted stronger high or low systems with a longer duration, the predicted wind speed from the WRF model was too large. 展开更多
关键词 wind power assessment anemometer tower data wrf model variance analysis
在线阅读 下载PDF
The Impacts of Topography on Spatial and Temporal Rainfall Distribution over Rwanda Based on WRF Model 被引量:9
6
作者 Didier Ntwali Bob Alex Ogwang Victor Ongoma 《Atmospheric and Climate Sciences》 2016年第2期145-157,共13页
The impact of topography on heavy rainfall during two rain seasons was investigated in order to explain their mechanisms on rainfall distribution over Rwanda. Weather Research and Forecasting (WRF-ARW) model was used ... The impact of topography on heavy rainfall during two rain seasons was investigated in order to explain their mechanisms on rainfall distribution over Rwanda. Weather Research and Forecasting (WRF-ARW) model was used to study two historical cases of heavy rainfall which took place over Rwanda during two rain seasons, March to May (MAM) and September to December (SOND), from April 7 to 9, 2012 (for MAM) and from October 29 to 31, 2012 (during SOND). The control experiment was done with actual topography, whereas sensitivity experiment was carried out with topography reduced by half. Results show that rainfall distribution over Rwanda significantly changes when topography is reduced. The reduction in topography leads to a decrease in rainfall amounts in both MAM and SOND seasons, with varying magnitudes. This reveals the importance of orography in determining rainfall amounts and distribution over the region. The accumulated rainfall amount from WRF underestimate or overestimate rain gauge stations data by region and by season, but there is good agreement especially in altitude below 1490 m and above 1554 m during April and October respectively. The results may motivate modelling carters to further improve parameterization schemes in the mountainous regions. 展开更多
关键词 TOPOGRAPHY Seasonal Rainfall Rwanda wrf model
在线阅读 下载PDF
A NUMERICAL STUDY OF TROPICAL DEEP CONVECTION USING WRF MODEL
7
作者 李嘉鹏 银燕 +1 位作者 金莲姬 张成竹 《Journal of Tropical Meteorology》 SCIE 2010年第3期247-254,共8页
The Weather Research Forecast model (WRF) configured with high resolution and NCEP 1°×1° reanalysis data were used to simulate the development of a tropical deep convection over the Tiwi Islands,norther... The Weather Research Forecast model (WRF) configured with high resolution and NCEP 1°×1° reanalysis data were used to simulate the development of a tropical deep convection over the Tiwi Islands,northern Australia,and to investigate the sensitivity of model results to model configuration and parameterization schemes of microphysical processes.The simulation results were compared with available measurements.The results show that the model can reproduce most of the important characteristics of the observed diurnal evolution of the convection,including the initiation of convection along the sea-breeze front,which is then reinforced by downdraft outflows,merging of cells and the formation of a deep convective system.However,further improvement is needed to simulate more accurately the location and the time for initiation of the deep convective system.Sensitivity tests show that double-nesting schemes are more accurate than the non-nesting schemes in predicting the distribution and intensity of precipitation as far as this particular case is concerned.Additionally,microphysical schemes also have an effect on the simulated amount of precipitation.It is shown that the best agreement is reached between the simulation results and observations when the Purdue Lin scheme is used. 展开更多
关键词 tropical deep convection wrf model parameterization of microphysical processes NESTING sensitivity experiment
在线阅读 下载PDF
Application of WRF Model for Vehicular Pollution Modelling Using AERMOD 被引量:2
8
作者 Awkash Kumar Anil Kumar Dikshit +1 位作者 Sadaf Fatima Rashmi S. Patil 《Atmospheric and Climate Sciences》 2015年第2期57-62,共6页
Vehicular pollution is becoming significant in urban areas because of increasing population. This is at ground level, so it gives high population exposure. In this study, Chembur, which is the most polluted area in Mu... Vehicular pollution is becoming significant in urban areas because of increasing population. This is at ground level, so it gives high population exposure. In this study, Chembur, which is the most polluted area in Mumbai city due to industrial and vehicular sources, is selected for vehicular pollution modeling using AMS/EPA Regulatory Model (AERMOD). Meteorological parameters, land use surface characteristics and source emission data are collected as required by AERMOD. The results of modelling depend upon reliability of input data and meteorological data has a vital role in the performance of the model. Generally, temporally and spatially interpolated meteorological data is used in modeling. This is generally collected from nearby meteorological station but this causes inaccuracy of the results. In this paper, the Weather Research and Forecasting (WRF) model has been used to generate onsite data on nine meteorological parameters. The modeling of six roads of Chembur has been performed using above meteorological data. This approach gives good results of traffic modeling. The results of AERMOD are compared with observed air quality which has contribution from all sources in the region and relative contribution of vehicular sources identified. 展开更多
关键词 Vehicular POLLUTION modelING AERMOD wrf
暂未订购
Comparison of WRF Model Physics Parameterizations over the MENA-CORDEX Domain 被引量:3
9
作者 George Zittis Panos Hadjinicolaou Jos Lelieveld 《American Journal of Climate Change》 2014年第5期490-511,共22页
We investigated the performance of 12 different physics configurations of the climate version of the Weather, Research and Forecasting (WRF) Model over the Middle East and North Africa (MENA) domain. Possible combinat... We investigated the performance of 12 different physics configurations of the climate version of the Weather, Research and Forecasting (WRF) Model over the Middle East and North Africa (MENA) domain. Possible combinations among two Planetary Boundary Layer (PBL), three Cumulus (CUM) and two Microphysics (MIC) schemes were tested. The 2-year simulations (December 1988-November 1990) have been compared with gridded observational data and station measurements for several variables, including total precipitation and maximum and minimum 2-meter air temperature. An objective ranking method of the 12 different simulations and the selection procedure of the best performing configuration for the MENA domain are based on several statistical metrics and carried out for relevant sub-domains and individual stations. The setup for cloud microphysics is found to have the strongest impact on temperature biases while precipitation is most sensitive to the cumulus parameterization scheme and mainly in the tropics. 展开更多
关键词 wrf Physics PARAMETERIZATIONS Regional Climate modeling Sensitivity MENA CORDEX
暂未订购
Evaluating Sensitivity to Different Options and Parameterizations of a Coupled Air Quality Modelling System over Bogotá, Colombia. Part I: WRF Model Configuration 被引量:1
10
作者 Beatriz Reboredo Raúl Arasa Bernat Codina 《Open Journal of Air Pollution》 2015年第2期47-64,共18页
Meteorological inputs are of great importance when implementing an air quality prediction system. In this contribution, the Weather Research and Forecast (WRF-ARW) model was used to compare the performance of the diff... Meteorological inputs are of great importance when implementing an air quality prediction system. In this contribution, the Weather Research and Forecast (WRF-ARW) model was used to compare the performance of the different cumulus, microphysics and Planet Boundary Layer parameterizations over Bogotá, Colombia. Surface observations were used for comparison and the evaluated meteorological variables include temperature, wind speed and direction and relative humidity. Differences between parameterizations were observed in meteorological variables and Betts-Miller-Janjic, Morrison 2-moment and BouLac schemes proved to be the best parameterizations for cumulus, microphysics and PBL, respectively. As a complement to this study, a WRF-Large Eddy Simulation was conducted in order to evaluate model results with finer horizontal resolution for air quality purposes. 展开更多
关键词 Sensitivity Analysis Air Quality modelLING METEOROLOGICAL modelLING wrf Physical OPTIONS
暂未订购
Study of Weak Intensity Cyclones over Bay of Bengal Using WRF Model
11
作者 Radhika D. Kanase P. S. Salvekar 《Atmospheric and Climate Sciences》 2014年第4期534-548,共15页
Numerical simulations of four weak cyclonic storms [two cases of pre-monsoon cyclones: Laila (2010), Aila (2009) and two cases of post-monsoon cyclones: Jal (2010), SCS (2003)] are carried out using WRF-ARW mesoscale ... Numerical simulations of four weak cyclonic storms [two cases of pre-monsoon cyclones: Laila (2010), Aila (2009) and two cases of post-monsoon cyclones: Jal (2010), SCS (2003)] are carried out using WRF-ARW mesoscale model. Betts-Miller-Janjic (BMJ) as cumulus parameterization (CP) scheme, Yonsei University(YSU) planetary boundary layer (PBL) scheme and WRF single moment 6 class (WSM6) microphysics (MP) scheme is kept same for all the cyclone cases. Three two-way interactive nested domains [60 km,20 kmand6.6 km] are used with initial and boundary conditions from NCEP Final Analysis data. The model integration is performed to evaluate the track, landfall time and position as well as intensity in terms of Central Sea Level Pressure (CSLP) and Maximum Surface Wind speed (MSW) of the storm. The track and landfall (time and position) of almost all cyclones are well predicted by the model (except for SCS cyclone case) which may be because of the accurate presentation of the steering flow by CP scheme. Irrespective of season, the intensity is overestimated in all the cases of cyclone, mainly because of the lower tropospheric and mid-tropospheric parameters are overestimated. YSU PBL scheme used here is responsible for the deep convection in and above PBL. Concentration of frozen hydrometeors at the mid-tropospheric levels and thus the latent heat released during auto conversion of hydrometeors is also responsible for overestimation of intensity. 展开更多
关键词 wrf-ARW model BMJ-YSU-WSM6 Combination Pre and Post MONSOON SEVERE Cyclonic Storms
在线阅读 下载PDF
A Hybrid Statistical-Dynamical Downscaling of Air Temperature over Scandinavia Using the WRF Model
12
作者 Jianfeng WANG Ricardo M.FONSECA +2 位作者 Kendall RUTLEDGE Javier MARTÍN-TORRES Jun YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第1期57-74,共18页
An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dyna... An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dynamical-only downscaling method are applied to daily mean,minimum and maximum air temperatures to investigate the quality of localscale estimates produced by downscaling.These two downscaling approaches are evaluated using station observation data obtained from the Finnish Meteorological Institute over a near-coastal region of western Finland.The dynamical downscaling is performed with the Weather Research and Forecasting(WRF)model,and the statistical downscaling method implemented is the Cumulative Distribution Function-transform(CDF-t).The CDF-t is trained using 20 years of WRF-downscaled Climate Forecast System Reanalysis data over the region at a 3-km spatial resolution for the central month of each season.The performance of the two methods is assessed qualitatively,by inspection of quantile-quantile plots,and quantitatively,through the Cramer-von Mises,mean absolute error,and root-mean-square error diagnostics.The hybrid approach is found to provide significantly more skillful forecasts of the observed daily mean and maximum air temperatures than those of the dynamical-only downscaling(for all seasons).The hybrid method proves to be less computationally expensive,and also to give more skillful temperature forecasts(at least for the Finnish near-coastal region). 展开更多
关键词 wrf air temperature Cumulative Distribution Function-transform hybrid statistical–dynamical downscaling model evaluation Scandinavian Peninsula
在线阅读 下载PDF
Simulating Impacts of Overland Flow on the July 2021 Extreme Rainfall in Zhengzhou,China with the WRF Model
13
作者 Chunhui JIA Ping ZHAO +2 位作者 Yingchun WANG Chengcheng HUANG Shiguang MIAO 《Journal of Meteorological Research》 2025年第2期431-452,共22页
The runoff calculation scheme in the Weather Research and Forecasting(WRF)model is based on an infiltrationexcess surface runoff scheme,which likely leads to an overestimation of soil moisture and an underestimation o... The runoff calculation scheme in the Weather Research and Forecasting(WRF)model is based on an infiltrationexcess surface runoff scheme,which likely leads to an overestimation of soil moisture and an underestimation of surface runoff when heavy rainfall occurs in areas with complex terrain.To overcome this defect,we considered the overland flow process on the grid scale of the WRF model for the first time by coupling a two-dimensional diffusion wave equation into the WRF Noah land surface model(LSM),called the WRF_Overland Flow(WRF_OLF)model.The new WRF model was then utilized to simulate the extreme rainfall that occurred during 19–22 July 2021 near the city of Zhengzhou in central China,which led to an extreme flood event.The results showed that the new WRF model simulated well the convergence and accumulation of overland flow in low-lying areas,changing the distributions of surface runoff and soil moisture and thereby influencing the exchanges of heat and water vapor between the surface and the atmosphere.The local change in non-adiabatic heating at the surface contributed to a decrease in surface pressure and then affected the development of the weather systems associated with the heavy rainfall event.Relative to a remarkable underestimation of rainfall in the original WRF simulation,the maximum rainfall intensity and the cumulative rainfall in the simulation with the new WRF configuration increased by 54.7%and 49.5%,respectively,bringing them closer to their observations.Concurrently,the new WRF model increased the skill for flood prediction.The results of this study provide new insights into the mechanisms of interaction between the land surface and the atmosphere and their roles in helping to predict heavy rainfall and associated flooding in areas of complex topography. 展开更多
关键词 overland flow extreme rainfall land-atmosphere interaction Weather Research and Forecasting(wrf)model
原文传递
基于不同目标函数的WRF-Hydro模型参数敏感性研究 被引量:1
14
作者 谷黄河 石怀轩 +2 位作者 孙敏涛 丁震 顾苏烨 《中国农村水利水电》 北大核心 2025年第1期61-69,共9页
水文与气象预报相结合可以有效提高洪水预报的精度和延长预见期,陆气耦合模型已成为水文气象学者研究的重点。WRF-Hydro模型作为新一代分布式陆气耦合模型在多尺度洪水预报中具有广阔的应用前景,但由于各物理过程参数化方案复杂,模型计... 水文与气象预报相结合可以有效提高洪水预报的精度和延长预见期,陆气耦合模型已成为水文气象学者研究的重点。WRF-Hydro模型作为新一代分布式陆气耦合模型在多尺度洪水预报中具有广阔的应用前景,但由于各物理过程参数化方案复杂,模型计算量大,对该模型的参数敏感性研究还不充分,也影响着模型的模拟精度。研究以湿润区的新安江上游屯溪流域为研究对象,构建多个单目标和多目标函数,并结合Morris全局参数敏感性分析方法,探究了WRF-Hydro模型在不同目标函数下的参数敏感性。结果表明:土壤参数(DKSAT、SMCMAX、BEXP)主要影响壤中流和地表径流,对径流量影响显著,尤其DKSAT最为敏感,直接影响水在土壤中的下渗速度,增大时基流量显著增高而洪峰流量则明显降低;产流参数(SLOPE、REFKDT)主要影响地表径流和基流分配,对洪水过程线形状有重要影响;河道汇流参数ManN影响汇流速度并主要控制峰现时间;植被参数MP对于总水量有一定影响;坡面汇流参数OVROUGHRTFAC和地下水参数Zmax则最不敏感。不同目标函数下的参数敏感性顺序和最优参数取值有一定差异,单目标函数中以相对误差为优化目标会更侧重于全年径流总量和低流量部分的模拟精度,而以效率系数和Kling-Gupta系数为目标则更侧重于场次洪水和高流量部分的模拟效果;基于几个单目标函数组合的多目标函数综合考虑了不同目标函数的影响,结果在一定程度上优于单目标函数。研究可为合理确定WRF-Hydro模型参数优化策略提供参考。 展开更多
关键词 wrf-Hydro模型 Morris法 敏感性分析 多目标函数 洪水预报
在线阅读 下载PDF
基于WRF的郑州市双峰降雨模拟方案分析
15
作者 张金萍 张熙 +2 位作者 王祥 王尧 杨沂荣 《水资源与水工程学报》 北大核心 2025年第3期28-34,44,共8页
为探究WRF模式模拟郑州市双峰降雨现象时的性能表现,特别是针对2011—2017年期间发生的10场双峰暴雨事件,选取了3种(WDM6、Morrison和Thompson)不同的微物理方案进行模拟分析,并将3种方案的模拟结果与实际观测数据进行比较。结果显示:3... 为探究WRF模式模拟郑州市双峰降雨现象时的性能表现,特别是针对2011—2017年期间发生的10场双峰暴雨事件,选取了3种(WDM6、Morrison和Thompson)不同的微物理方案进行模拟分析,并将3种方案的模拟结果与实际观测数据进行比较。结果显示:3种微物理方案的误差指标均表明Morrison方案表现出一定的优势,并且其结果更加稳定,3种微物理方案在相关系数方面都具有较好的数据体现;Morrison方案在模拟降雨过程线方面优于其他2种方案,对于雨型及雨峰贴合度,Morrison方案总体上比其他2种方案表现更佳,尽管在个别场次中存在例外情况。研究结果可为郑州市双峰降雨预报方案的选择提供参考。 展开更多
关键词 双峰降雨 降雨模拟 wrf模式 微物理方案 郑州市
在线阅读 下载PDF
基于WRF模式的CFD与LSTM技术对低空风切变数值模拟研究 被引量:2
16
作者 董泽新 吴硕岩 +5 位作者 叶芳 陈丽晶 李毅 孙辰博 徐峰 刘磊 《高原气象》 北大核心 2025年第2期546-562,共17页
为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Envi... 为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的FNL全球再分析资料(Final Operational Global Analysis)、先进星载热发射和反射辐射仪全球数字高程模型以及兰州中川机场的实况观测资料,采用中尺度数值天气预报模式(Weather Research and Forecasting Model,WRF)、WRF结合计算流体动力学(Computational Fluid Dynamics,CFD)方法、长短期神经网络(Long Short-Term Memory,LSTM)方法,对2021年4月15-16日兰州中川机场的两次风切变过程进行模拟分析。结果表明:(1)在小于1 km的网格中使用大涡模拟,WRF模式在单个站点风速模拟任务中表现更好,但在近地面水平风场风速模拟效果上,不如WRF模式结合计算流体力学模型方案;(2)对于飞机降落过程中遭遇的两次低空风切变的模拟,WRF-LES和WRF-CFD两种模式都可以模拟出第一次低空风切变,而第二次受传入模式的WRF风速数据值较小的影响,两种模式风速差都没有达到阈值,需要在后续工作中进一步验证;(3)低风速条件(6 m·s^(-1))下,基于LSTM的单变量风速预测模型平均绝对误差基本维持在0.59 m·s^(-1),能较好地把握不同地形与环流背景条件下风速变化的非线性关系,虽然受到WRF误差和观测要素不全的限制,多变量风速预测能在保证平均绝对百分比误差小于6.60%的情况下,以更高的计算效率和泛化能力实现风速预测。本文不仅验证了WRF-CFD和WRF-LES耦合方案在风场和低空风切变预报中的差异,还探讨了基于LSTM的风速预测的可行性和准确性,期望为提高风场模拟精度,缩短精细风场模拟时间提供新的视角和方法。 展开更多
关键词 低空风切变 计算流体力学模型(CFD) wrf模式 大涡模拟 长短期记忆网络
在线阅读 下载PDF
Improving the Forecasts of Coastal Wind Speeds in Tianjin,China Based on the WRF Model with Machine Learning Algorithms 被引量:1
17
作者 Weihang ZHANG Meng TIAN +5 位作者 Shangfei HAI Fei WANG Xiadong AN Wanju LI Xiaodong LI Lifang SHENG 《Journal of Meteorological Research》 SCIE CSCD 2024年第3期570-585,共16页
Characterized by sudden changes in strength,complex influencing factors,and significant impacts,the wind speed in the circum-Bohai Sea area is relatively challenging to forecast.On the western side of Bohai Bay,as the... Characterized by sudden changes in strength,complex influencing factors,and significant impacts,the wind speed in the circum-Bohai Sea area is relatively challenging to forecast.On the western side of Bohai Bay,as the economic center of the circum-Bohai Sea,Tianjin exhibits a high demand for accurate wind forecasting.In this study,three machine learning algorithms were employed and compared as post-processing methods to correct wind speed forecasts by the Weather Research and Forecast(WRF)model for Tianjin.The results showed that the random forest(RF)achieved better performance in improving the forecasts because it substantially reduced the model bias at a lower computing cost,while the support vector machine(SVM)performed slightly worse(especially for stronger winds),but it required an approximately 15 times longer computing time.The back propagation(BP)neural network produced an average forecast significantly closer to the observed forecast but insufficiently reduced the RMSE.In regard to wind speed frequency forecasting,the RF method commendably corrected the forecasts of the frequency of moderate(force 3)wind speeds,while the BP method showed a desirable capability for correcting the forecasts of stronger(force>6)winds.In addition,the 10-m u and v components of wind(u_(10)and v_(10)),2-m relative humidity(RH_(2))and temperature(T_(2)),925-hPa u(u925),sea level pressure(SLP),and 500-hPa temperature(T_(500))were identified as the main factors leading to bias in wind speed forecasting by the WRF model in Tianjin,indicating the importance of local dynamical/thermodynamic processes in regulating the wind speed.This study demonstrates that the combination of numerical models and machine learning techniques has important implications for refined local wind forecasting. 展开更多
关键词 machine learning Weather Research and Forecast(wrf)model wind speed forecasting coastal region
原文传递
基于WRF-STILT模式的长三角大气CO_(2)排放反演
18
作者 杨樱 马心怡 +6 位作者 黄文晶 胡诚 胡凝 张弥 曹畅 柳艺博 肖薇 《中国环境科学》 北大核心 2025年第7期3622-3633,共12页
准确估算区域尺度特别是大城市群的CO_(2)排放对温室气体减排工作至关重要,利用WRF-STILT模式结合三种先验人为CO_(2)排放清单(EDGAR v6.0、EDGAR v6.0与GCG v1.0相结合的改进清单、ODIAC清单)模拟2018年冬季长三角地区大气CO_(2)浓度,... 准确估算区域尺度特别是大城市群的CO_(2)排放对温室气体减排工作至关重要,利用WRF-STILT模式结合三种先验人为CO_(2)排放清单(EDGAR v6.0、EDGAR v6.0与GCG v1.0相结合的改进清单、ODIAC清单)模拟2018年冬季长三角地区大气CO_(2)浓度,并以安徽全椒70m高塔的大气CO_(2)浓度观测数据作为参考值,通过比例因子贝叶斯反演的方法对模拟结果进行优化,实现了长三角区域人为CO_(2)排放通量的估算.结果表明:WRF-STILT模式模拟的CO_(2)浓度能够较好地显示长三角的CO_(2)排放特征.冬季,改进清单模拟的CO_(2)浓度值较仅使用EDGAR v6.0模拟的CO_(2)浓度值更接近于观测值;基于EDGAR清单和改进清单估算的后验CO_(2)排放通量分别为(0.199±0.005)和(0.200±0.007)mg/(m^(2)·s),相较于这两个清单的先验CO_(2)排放通量,后验排放通量分别下降了0.02和0.01mg/(m^(2)·s),比例因子贝叶斯反演法对基于EDGAR清单先验排放的优化幅度较大,用改进清单计算长三角CO_(2)排放总量时电力与工业排放是不确定性的最大来源;夜晚边界层高度较低,模型在模拟时将边界层外的排放计算进来导致模拟值的高估.在未来进行模拟时首先应确保WRF模型模拟的夜晚小时边界层高度是准确的,其次排放清单产品在制作过程中还应考虑垂直方向上不同排放源的高度信息. 展开更多
关键词 温室气体 wrf-STILT模式 长三角区域 CO_(2)
在线阅读 下载PDF
基于WRF-Solar和VMD-BiGRU的超短期太阳辐射订正预报研究
19
作者 段济开 陈香月 +3 位作者 王文鹏 常明恒 陈伯龙 左洪超 《太阳能学报》 北大核心 2025年第1期710-716,共7页
太阳辐射具有很强的非线性特征,给光伏发电并网带来诸多严重挑战。针对该问题,基于数值天气预报模式、机器学习和变分模态分解发展了一种订正预报方法:1)利用WRF-Solar模式对光伏站点的地表太阳辐射进行预报;2)采用变分模态分解(VMD)方... 太阳辐射具有很强的非线性特征,给光伏发电并网带来诸多严重挑战。针对该问题,基于数值天气预报模式、机器学习和变分模态分解发展了一种订正预报方法:1)利用WRF-Solar模式对光伏站点的地表太阳辐射进行预报;2)采用变分模态分解(VMD)方法对其与观测值的偏差进行分解;3)利用双向循环神经网络(BiGRU)对分解后的各分量进行训练和预报;4)对各分量的预报进行求和后结合WRF-Solar的预报结果得到地表太阳辐射的订正预报结果。试验结果表明,经过VMD-BiGRU模型订正后,相比于WRF-Solar的预报结果 MAE和RMSE的提升百分比分别为87.39%和87.29%,相关系数提高了0.25。 展开更多
关键词 wrf-Solar模式 太阳辐射 机器学习 循环神经网络 变分模态分解
原文传递
自动气象站数据同化密度对WRF模式降雨预报的影响
20
作者 乔泽宇 李步 +1 位作者 龚傲凡 倪广恒 《地球物理学报》 北大核心 2025年第6期2055-2065,共11页
数据同化技术和观测手段不断发展完善,但当前针对自动气象站(AWS)空间同化密度对WRF模式降雨预报影响的研究仍显不足.本研究以具有高密度AWS数据的京津冀地区为研究区域,基于三维变分(3DVar)数据同化方法评估了AWS的同化范围和密度对WR... 数据同化技术和观测手段不断发展完善,但当前针对自动气象站(AWS)空间同化密度对WRF模式降雨预报影响的研究仍显不足.本研究以具有高密度AWS数据的京津冀地区为研究区域,基于三维变分(3DVar)数据同化方法评估了AWS的同化范围和密度对WRF模式降雨预报的影响.结果表明,同化AWS观测数据能改善WRF模式降雨预报准确度,其中内层高分辨率嵌套范围内的观测数据发挥了主要作用.数据同化对降雨预报的改善效果会随着AWS同化密度的增加而逐渐增强.当同化密度较低时,数据同化主要改善了WRF模式降雨面积的预报结果;随着同化密度的增加,降雨总量的预报准确度会进一步提升,但这种改善效应存在“饱和点”.在本案例中,当同化站点空间密度达到1个/500km^(2)时,进一步提高同化站点空间密度对WRF模式降雨预报准确度的边际提升作用已不明显.研究结果可以为在海量观测数据背景下制定AWS数据同化策略提供参考. 展开更多
关键词 wrf模式 3DVar系统 自动气象站数据 同化密度
在线阅读 下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部