期刊文献+
共找到3,476篇文章
< 1 2 174 >
每页显示 20 50 100
G-α-E-半预不变凸规划的Wolfe型对偶
1
作者 李钰 魏佳 《贵州大学学报(自然科学版)》 2025年第3期26-34,共9页
介绍了一类新的广义不变凸函数,其称为G-α-E-半预不变凸函数;探讨了与此类函数相关的多目标规划问题,并给出这类问题的最优性充分条件;最后,建立了相对应的Wolfe型对偶模型,并讨论该模型与原问题之间的可行解和有效解之间的关系,获得... 介绍了一类新的广义不变凸函数,其称为G-α-E-半预不变凸函数;探讨了与此类函数相关的多目标规划问题,并给出这类问题的最优性充分条件;最后,建立了相对应的Wolfe型对偶模型,并讨论该模型与原问题之间的可行解和有效解之间的关系,获得了弱对偶、强对偶、逆对偶定理。研究丰富了已有文献中与广义凸规划有关的Wolfe型对偶理论。 展开更多
关键词 G-α-E-半预不变凸函数 多目标规划 最优性条件 wolfE型对偶
在线阅读 下载PDF
聚合博弈的差分隐私分布式算法:一种Frank-Wolfe方法
2
作者 杨通清 莫立坡 +1 位作者 龙飞 符义昊 《控制与决策》 北大核心 2025年第5期1677-1686,共10页
考虑聚合博弈的隐私保护分布式纳什均衡寻求算法设计.特别地,考虑该博弈不存在中心节点,在这种情况下,每个玩家无法直接获得用于策略更新所需的聚合策略信息,采用动态跟踪一致性协议对其进行估计,其中玩家用于估计聚合策略的状态量被认... 考虑聚合博弈的隐私保护分布式纳什均衡寻求算法设计.特别地,考虑该博弈不存在中心节点,在这种情况下,每个玩家无法直接获得用于策略更新所需的聚合策略信息,采用动态跟踪一致性协议对其进行估计,其中玩家用于估计聚合策略的状态量被认为是需要保护的敏感信息.为了保护玩家的隐私,利用相互独立的高斯噪声对玩家的梯度信息进行干扰.通过将Frank-Wolfe方法与动态跟踪一致性协议相结合,设计时变通信拓扑下带约束聚合博弈的分布式纳什均衡寻求算法.进而,分析算法实现-差分隐私的方差界.此外,通过对聚合项估计误差的收敛性分析得到算法收敛的充分条件,给出算法的收敛性证明.最后,通过数值仿真验证了所提出算法的有效性和收敛速度更快的优越性.(ε,δ) 展开更多
关键词 分布式博弈 差分隐私 聚合博弈 寻找纳什均衡 隐私保护 Frank-wolfe方法
原文传递
带状疱疹继发皮肤转移癌Wolf同位反应一例
3
作者 毛庆 彭刚 +2 位作者 祝虎 欧阳兴 郭衡山 《中国麻风皮肤病杂志》 2025年第2期130-131,共2页
患者,男,72岁。带状疱疹愈后原皮损处出现丘疹、结节、斑块伴疼痛3个月。病理支持低分化腺癌。转肿瘤科予以替吉奥、特瑞普利单抗治疗2次后,患者胸壁结节和斑块明显缩小、变平,疼痛明显缓解。
关键词 带状疱疹 皮肤转移癌 wolf同位反应
暂未订购
A Surrogate-assisted Multi-objective Grey Wolf Optimizer for Empty-heavy Train Allocation Considering Coordinated Line Utilization Balance 被引量:1
4
作者 Zhigang Du Shaoquan Ni +1 位作者 Jeng-Shyang Pan Shuchuan Chu 《Journal of Bionic Engineering》 2025年第1期383-397,共15页
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc... This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector. 展开更多
关键词 Surrogate-assisted model Grey wolf optimizer Multi-objective optimization Empty-heavy train allocation
在线阅读 下载PDF
5DGWO-GAN:A Novel Five-Dimensional Gray Wolf Optimizer for Generative Adversarial Network-Enabled Intrusion Detection in IoT Systems
5
作者 Sarvenaz Sadat Khatami Mehrdad Shoeibi +2 位作者 Anita Ershadi Oskouei Diego Martín Maral Keramat Dashliboroun 《Computers, Materials & Continua》 SCIE EI 2025年第1期881-911,共31页
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by... The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats. 展开更多
关键词 Internet of things intrusion detection generative adversarial networks five-dimensional binary gray wolf optimizer deep learning
在线阅读 下载PDF
Grey wolf optimization-based fuzzy-PID controller for load frequency control in multi-area power systems
6
作者 Faiyaj Ahmed Limon Rhydita Shahrin Upoma +5 位作者 Nomita Sinha Shristi Roy Swarna Bidyut Kanti Nath Kulsuma Khanum Jubaer Rahman Shahid Iqbal 《Journal of Automation and Intelligence》 2025年第2期145-159,共15页
This study develops a GWO-optimized cascaded fuzzy-PID controller with triangular membership functions for load frequency control in interconnected power systems.The controller’s effectiveness is demonstrated on ther... This study develops a GWO-optimized cascaded fuzzy-PID controller with triangular membership functions for load frequency control in interconnected power systems.The controller’s effectiveness is demonstrated on thermal–thermal and hybrid thermal–hydro–gas power systems.The controller parameters were tuned using the Integral Time Absolute Error(ITAE)objective function,which was also evaluated alongside other objective functions(IAE,ISE,and ITSE)to ensure high precision in frequency stabilization.To validate the effectiveness of the triangular membership function,comparisons were made with fuzzy-PID controllers employing trapezoidal and Gaussian membership functions.Performance metrics,including ITAE,settling time,overshoot,and undershoot of frequency deviation,as well as tie-line power deviation,were evaluated.Robustness was established through a comprehensive sensitivity analysis with T_(G),T_(T),andT_(R) parameter variations(±50%),a non-linearity analysis incorporating Generation Rate Constraint(GRC)and Governor Deadband(GDB),a random Step Load Perturbation(SLP)over 0–100 s,and also Stability analysis of the proposed scheme is conducted using multiple approaches,including frequency-domain analysis,Lyapunov stability theory,and eigenvalue analysis.Additionally,the system incorporating thermal,hydro,and gas turbines,along with advanced components like CES and HVDC links,was analysed.Comparisons were conducted against controllers optimized using Modified Grasshopper Optimization Algorithm(MGOA),Honey Badger Algorithm(HBA),Particle Swarm Optimization(PSO),Artificial Bee Colony(ABC),and Spider Monkey Optimization(SMO)algorithms.Results demonstrate that the GWO-based fuzzy-PID controller outperforms the alternatives,exhibiting superior performance across all evaluated metrics.This highlights the potential of the proposed approach as a robust solution for load frequency control in complex and dynamic power systems. 展开更多
关键词 Fuzzy-PID controller Grey wolf algorithm Load frequency Triangular membership function ITAE
在线阅读 下载PDF
基于Wolf的数字化变电站通信网异常流量检测系统设计
7
作者 居玮 《家电维修》 2025年第1期83-85,共3页
随着数字化变电站技术的广泛应用,通信网络安全问题日益突出,异常流量的检测已成为保障电网稳定运行的关键技术之一。本文设计了一种基于Wolf的数字化变电站通信网异常流量检测系统,该系统能有效识别并处理潜在的安全威胁。通过对系统... 随着数字化变电站技术的广泛应用,通信网络安全问题日益突出,异常流量的检测已成为保障电网稳定运行的关键技术之一。本文设计了一种基于Wolf的数字化变电站通信网异常流量检测系统,该系统能有效识别并处理潜在的安全威胁。通过对系统架构、监控模块、异常检测算法以及数据处理机制的详细介绍,展示了系统设计的合理性和有效性。 展开更多
关键词 数字化变电站 异常流量检测 wolf 通信网络安全
在线阅读 下载PDF
基于Wolfe搜索机制的随机梯度地震反演方法
8
作者 吴亚宁 黄捍东 +3 位作者 徐海 邓忠毅 张银涛 王超 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第11期4309-4324,共16页
地震反演技术能够最有效地从地震信号中挖掘地层参数和岩性信息,一直是储层预测研究的焦点.传统线性地震反演算法缺乏全局搜索能力,反演结果精度较低.本研究以全局寻优为出发点,将一种结构简单和寻优能力强的全局优化算法——梯度优化算... 地震反演技术能够最有效地从地震信号中挖掘地层参数和岩性信息,一直是储层预测研究的焦点.传统线性地震反演算法缺乏全局搜索能力,反演结果精度较低.本研究以全局寻优为出发点,将一种结构简单和寻优能力强的全局优化算法——梯度优化算法(Gradient-Based Optimizer,GBO),引入地震反演.相比于差分进化等其他全局优化算法,GBO算法通过梯度随机搜索机制和局部逃逸算子进行全局搜索,能有效降低地震反演的多解性.但是,GBO算法收敛速度慢和局部随机性强,难以满足大批量的地震反演计算需求.因此,本文在GBO算法迭代过程中引入Wolfe线性局部搜索机制,提出基于Wolfe搜索的随机梯度优化算法(Stochastic—Gradient Optimization Based on Wolfe's Search,SGO-WS).在全局搜索过程中,通过线性搜索算子,充分挖掘当前迭代解周围的局部最优,既保证了反演解精度,又大幅提高了原GBO算法的计算效率,同时还有效降低了反演解的局部随机性.Marmousi-2模型测试验证了SGO-WS算法的可行性和准确性,厄瓜多尔Tapir油田地震资料也验证了SGO-WS算法的实用性. 展开更多
关键词 地震反演 梯度优化算法 wolfe搜索机制 SGO-WS算法 全局寻优
在线阅读 下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer 被引量:2
9
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
在线阅读 下载PDF
基于Wolf的数字化变电站通信网异常流量检测系统 被引量:1
10
作者 何肖蒙 王颖舒 +1 位作者 袁舒 肖小兵 《电子设计工程》 2024年第7期110-114,共5页
数字化变电站通信网异常流量检测过程中易陷入局部最优,导致检测结果不精准。为了解决这个问题,提出了基于Wolf的数字化变电站通信网异常流量检测系统。构建系统总体结构,分析通信网流量异常频域特征。通过采集异常流量模块解析目的物... 数字化变电站通信网异常流量检测过程中易陷入局部最优,导致检测结果不精准。为了解决这个问题,提出了基于Wolf的数字化变电站通信网异常流量检测系统。构建系统总体结构,分析通信网流量异常频域特征。通过采集异常流量模块解析目的物理地址,检查组件为系统提供信息交互引擎。使用Wolf算法将混沌序列映射到数字化变电站通信网异常流量多维相空间,设置控制收敛因子,避免检测结果陷入局部最优。计算异常流量特征值的熵,判断流量异常类型。实验结果表明,该系统一次设备异常流量检测结果与实际数据一致,二次设备异常流量检测结果与实际数据存在最大为2 Mb/s的误差,说明使用所设计系统检测结果精准。 展开更多
关键词 wolf算法 混沌映射 变电站通信网 异常流量 检测
在线阅读 下载PDF
1例隐匿性平衡易位导致的家系性Wolf-Hirschhorn综合征
11
作者 张雅冰 刘娇 +2 位作者 毛斌 刘琳 马晓玲 《中国优生与遗传杂志》 2024年第10期2129-2133,共5页
目的明确一家系中2例发育异常患儿的遗传学病因,对下次妊娠提供生育指导。方法对夫妇进行常规染色体核型分析、染色体拷贝数变异测序(CNV-seq)并进一步通过高分辨率染色体核型分析检测方法,判断异常染色体的来源。对先证者外周血及引产... 目的明确一家系中2例发育异常患儿的遗传学病因,对下次妊娠提供生育指导。方法对夫妇进行常规染色体核型分析、染色体拷贝数变异测序(CNV-seq)并进一步通过高分辨率染色体核型分析检测方法,判断异常染色体的来源。对先证者外周血及引产胎儿羊水样本进行CNV-seq检测。结果夫妇常规染色体核型分析结果未见异常。CNV-seq检测显示先证者及胎儿4p末端3.78 Mb和3.86 Mb片段缺失,8q末端6.76 Mb和6.68 Mb的片段重复,而夫妇结果正常。高分辨率染色体核型分析结果显示患儿母亲为4p和8q的隐匿性平衡易位携带者。结论该家系中先证者和引产胎儿均为不平衡性的Wolf-Hirschhorn综合征,其遗传模式和临床表型均与Wolf-Hirschhorn综合征相符,均遗传自母亲的隐匿性平衡异位。常规染色体核型分析、CNV-seq检测以及高分辨率染色体核型分析技术的联合运用,可以有效提高对隐匿性平衡易位夫妇所生Wolf-Hirschhorn综合征患儿的诊断效率。 展开更多
关键词 隐匿性平衡易位 不平衡性wolf-Hirschhorn综合征 高分辨率染色体核型分析 临床特征 拷贝数变异测序
原文传递
带状疱疹后wolf’s同位反应1例
12
作者 沈丹谦 马丽俐 《中国乡村医药》 2024年第11期49-50,共2页
同位反应描述了一种在先前已治愈的无关皮肤病的部位出现不同皮肤病的现象。Wolf在1988年将这种现象命名为“等位反应”,后在1995年改名为“同位反应”。带状疱疹后同位反应是最常见报道的同位反应^([1])。现回顾带状疱疹后wolf’s同位... 同位反应描述了一种在先前已治愈的无关皮肤病的部位出现不同皮肤病的现象。Wolf在1988年将这种现象命名为“等位反应”,后在1995年改名为“同位反应”。带状疱疹后同位反应是最常见报道的同位反应^([1])。现回顾带状疱疹后wolf’s同位反应患者1例资料,报道如下。1病历摘要患者男,27岁,右侧胸背部红斑丘疹伴瘙痒、疼痛1月余。2021年3月因重度再生障碍性贫血于我院行异基因造血干细胞移植术。 展开更多
关键词 wolf’s同位反应 湿疹样皮炎 带状疱疹
暂未订购
Enhancing Hyper-Spectral Image Classification with Reinforcement Learning and Advanced Multi-Objective Binary Grey Wolf Optimization
13
作者 Mehrdad Shoeibi Mohammad Mehdi Sharifi Nevisi +3 位作者 Reza Salehi Diego Martín Zahra Halimi Sahba Baniasadi 《Computers, Materials & Continua》 SCIE EI 2024年第6期3469-3493,共25页
Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving ... Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification.This process involves selecting the most informative spectral bands,which leads to a reduction in data volume.Focusing on these key bands also enhances the accuracy of classification algorithms,as redundant or irrelevant bands,which can introduce noise and lower model performance,are excluded.In this paper,we propose an approach for HS image classification using deep Q learning(DQL)and a novel multi-objective binary grey wolf optimizer(MOBGWO).We investigate the MOBGWO for optimal band selection to further enhance the accuracy of HS image classification.In the suggested MOBGWO,a new sigmoid function is introduced as a transfer function to modify the wolves’position.The primary objective of this classification is to reduce the number of bands while maximizing classification accuracy.To evaluate the effectiveness of our approach,we conducted experiments on publicly available HS image datasets,including Pavia University,Washington Mall,and Indian Pines datasets.We compared the performance of our proposed method with several state-of-the-art deep learning(DL)and machine learning(ML)algorithms,including long short-term memory(LSTM),deep neural network(DNN),recurrent neural network(RNN),support vector machine(SVM),and random forest(RF).Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly improves classification accuracy compared to traditional optimization and DL techniques.MOBGWO-DQL shows greater accuracy in classifying most categories in both datasets used.For the Indian Pine dataset,the MOBGWO-DQL architecture achieved a kappa coefficient(KC)of 97.68%and an overall accuracy(OA)of 94.32%.This was accompanied by the lowest root mean square error(RMSE)of 0.94,indicating very precise predictions with minimal error.In the case of the Pavia University dataset,the MOBGWO-DQL model demonstrated outstanding performance with the highest KC of 98.72%and an impressive OA of 96.01%.It also recorded the lowest RMSE at 0.63,reinforcing its accuracy in predictions.The results clearly demonstrate that the proposed MOBGWO-DQL architecture not only reaches a highly accurate model more quickly but also maintains superior performance throughout the training process. 展开更多
关键词 Hyperspectral image classification reinforcement learning multi-objective binary grey wolf optimizer band selection
在线阅读 下载PDF
Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms
14
作者 Afnan M.Alhassan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2207-2223,共17页
Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)method... Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM). 展开更多
关键词 Breast arterial calcification cardiovascular disease semantic segmentation transfer learning enhanced wolf pack algorithm and modified support vector machine
在线阅读 下载PDF
标准Wolfe线搜索下改进的HS共轭梯度法
15
作者 王森森 郑宗剑 韩信 《四川文理学院学报》 2024年第2期50-55,共6页
通过对现有的HS共轭梯度法进行修正,提出一个具有下降性质的改进型HS共轭梯度法,该算法的下降性质得到论证.在标准Wolfe线搜索条件下,证明了改进的HS算法具有全局收敛性.最后,通过数值实验结果的对比,发现新算法数值效果是优异的.
关键词 无约束优化 共轭梯度法 标准wolfe线搜索 全局收敛性
在线阅读 下载PDF
Wolfe线搜下改进的FR型谱共轭梯度法
16
作者 王森森 韩信 吴祥标 《合肥师范学院学报》 2024年第5期80-84,共5页
谱共轭梯度法作为经典共轭梯度法的推广,它是求解大规模无约束优化问题的有效方法之一.基于标准Wolfe线搜索准则和充分下降性条件,提出了一种具有充分下降性质的FR型谱共轭梯度法.在温和的假设条件下,该算法具有全局收敛性.最后,将新算... 谱共轭梯度法作为经典共轭梯度法的推广,它是求解大规模无约束优化问题的有效方法之一.基于标准Wolfe线搜索准则和充分下降性条件,提出了一种具有充分下降性质的FR型谱共轭梯度法.在温和的假设条件下,该算法具有全局收敛性.最后,将新算法与现存的修正FR型谱共轭梯度法进行比较,数值结果表明提出的算法是极其有效的. 展开更多
关键词 无约束优化 谱共轭梯度法 充分下降性 标准wolfe线搜索准则 全局收敛性
在线阅读 下载PDF
The Analysis of Wolf Imagery in The Company of Wolves
17
作者 WANG Wen-ke 《Journal of Literature and Art Studies》 2024年第7期607-611,共5页
Imagery analysis is a commonly used analytical method in literary analysis.In Angela Carter’s work,the image of wolves is particularly prominent.Her“Werewolf Tetralogy”rewrites traditional culture and subverts trad... Imagery analysis is a commonly used analytical method in literary analysis.In Angela Carter’s work,the image of wolves is particularly prominent.Her“Werewolf Tetralogy”rewrites traditional culture and subverts traditional consciousness,and is the research object of many scholars.Starting from the analysis of the wolf image in The Company of Wolves,this paper uses Deleuze’s Becoming-Animal Theory to explore the construction of harmony between nature,humans and gender relations in The Company of Wolves. 展开更多
关键词 The Company of Wolves wolf imagery Becoming-Animal
在线阅读 下载PDF
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
18
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 Grey wolf Optimization (GWO) Metaheuristic Algorithm Optimization Problems Agents’ Positions Leader Wolves Optimal Fitness Values Optimization Challenges
在线阅读 下载PDF
Wind Power Forecasting Using Grey Wolf Optimized Long Short-Term Memory Based on Numerical Weather Prediction
19
作者 Mohamed El-Dosuky Reema Alowaydan Bashayer Alqarni 《Journal of Power and Energy Engineering》 2024年第12期1-16,共16页
Wind power generation is among the most promising and eco-friendly energy sources today. Wind Power Forecasting (WPF) is essential for boosting energy efficiency and maintaining the operational stability of power grid... Wind power generation is among the most promising and eco-friendly energy sources today. Wind Power Forecasting (WPF) is essential for boosting energy efficiency and maintaining the operational stability of power grids. However, predicting wind power comes with significant challenges, such as weather uncertainties, wind variability, complex terrain, limited data, insufficient measurement infrastructure, intricate interdependencies, and short lead times. These factors make it difficult to accurately forecast wind behavior and respond to sudden power output changes. This study aims to precisely forecast electricity generation from wind turbines, minimize grid operation uncertainties, and enhance grid reliability. It leverages historical wind farm data and Numerical Weather Prediction data, using k-Nearest Neighbors for pre-processing, K-means clustering for categorization, and Long Short-Term Memory (LSTM) networks for training and testing, with model performance evaluated across multiple metrics. The Grey Wolf Optimized (GWO) LSTM classification technique, a deep learning model suited to time series analysis, effectively handles temporal dependencies in input data through memory cells and gradient-based optimization. Inspired by grey wolves’ hunting strategies, GWO is a population-based metaheuristic optimization algorithm known for its strong performance across diverse optimization tasks. The proposed Grey Wolf Optimized Deep Learning model achieves an R-squared value of 0.97279, demonstrating that it explains 97.28% of the variance in wind power data. This model surpasses a reference study that achieved an R-squared value of 0.92 with a hybrid deep learning approach but did not account for outliers or anomalous data. 展开更多
关键词 Wind Power Forecasting Long Short-Term Memory Numerical Weather Prediction Grey wolf Optimization
在线阅读 下载PDF
上一页 1 2 174 下一页 到第
使用帮助 返回顶部