Rail corrugation, as a prevalent type of rail damage in heavy railways, induces diseases in the track structure. In order to ensure the safe operation of trains, an improved whale optimization algorithm is proposed to...Rail corrugation, as a prevalent type of rail damage in heavy railways, induces diseases in the track structure. In order to ensure the safe operation of trains, an improved whale optimization algorithm is proposed to optimize the rail corrugation evolution trend prediction model of the least squares support vector machine (IPCA-ELWOA-LSSVM). The elite reverse learning combined with the Lévy flight strategy is introduced to improve the whale optimization algorithm. The improved WOA (ELWOA) algorithm is used to continuously optimize the kernel parameter σ and the normalization parameter γ in the LSSVM model. Finally, the improved prediction model is validated using data from a domestic heavy-duty railway experimental line database and compared with the prediction model before optimization and the other commonly used models. The experimental results show that the ELWOA-LSSVM prediction model has the highest accuracy, which proves that the proposed method has high accuracy in predicting the rail corrugation evolution trend.展开更多
精准可靠地预测锅炉NO x 排放量对电站锅炉低氮运行有着重要意义,为了提升模型的预测效果,提出一种基于鲸鱼优化算法-最小二乘支持向量机(WOA-LSSVM)的锅炉NO x 排放量预测建模方法。首先归一化处理初始样本数据,然后通过WOA算法对LSSV...精准可靠地预测锅炉NO x 排放量对电站锅炉低氮运行有着重要意义,为了提升模型的预测效果,提出一种基于鲸鱼优化算法-最小二乘支持向量机(WOA-LSSVM)的锅炉NO x 排放量预测建模方法。首先归一化处理初始样本数据,然后通过WOA算法对LSSVM中的核函数宽度和惩罚因子两个参数进行寻优求解,建立WOA-LSSVM黑箱模型,最终得到模型输出,同时将采用果蝇优化算法(FOA)、粒子群优化算法(PSO)优化参数建立的LSSVM预测模型和单一LSSVM预测模型作为对比研究。仿真结果表明,采用WOA优化的LSSVM模型在NO x 排放量预测方面明显优于其他选定模型,具有稳定且较高精度的仿真性能。展开更多
文摘Rail corrugation, as a prevalent type of rail damage in heavy railways, induces diseases in the track structure. In order to ensure the safe operation of trains, an improved whale optimization algorithm is proposed to optimize the rail corrugation evolution trend prediction model of the least squares support vector machine (IPCA-ELWOA-LSSVM). The elite reverse learning combined with the Lévy flight strategy is introduced to improve the whale optimization algorithm. The improved WOA (ELWOA) algorithm is used to continuously optimize the kernel parameter σ and the normalization parameter γ in the LSSVM model. Finally, the improved prediction model is validated using data from a domestic heavy-duty railway experimental line database and compared with the prediction model before optimization and the other commonly used models. The experimental results show that the ELWOA-LSSVM prediction model has the highest accuracy, which proves that the proposed method has high accuracy in predicting the rail corrugation evolution trend.
文摘精准可靠地预测锅炉NO x 排放量对电站锅炉低氮运行有着重要意义,为了提升模型的预测效果,提出一种基于鲸鱼优化算法-最小二乘支持向量机(WOA-LSSVM)的锅炉NO x 排放量预测建模方法。首先归一化处理初始样本数据,然后通过WOA算法对LSSVM中的核函数宽度和惩罚因子两个参数进行寻优求解,建立WOA-LSSVM黑箱模型,最终得到模型输出,同时将采用果蝇优化算法(FOA)、粒子群优化算法(PSO)优化参数建立的LSSVM预测模型和单一LSSVM预测模型作为对比研究。仿真结果表明,采用WOA优化的LSSVM模型在NO x 排放量预测方面明显优于其他选定模型,具有稳定且较高精度的仿真性能。