Designing efficient and durable hydrogen evolution reaction(HER)catalysts for seawater electrolysis is crucial for large-scale hydrogen production.Here,we introduce a theory-driven design of metal/WN electrocatalysts,...Designing efficient and durable hydrogen evolution reaction(HER)catalysts for seawater electrolysis is crucial for large-scale hydrogen production.Here,we introduce a theory-driven design of metal/WN electrocatalysts,with metal strongly coupled to lattice-matched WN.Theoretical calculations for Pt/WN reveal that W sites enhance H_(2)O adsorption/dissociation,optimizing Pt's H binding.The prepared Pt/WN@CP nanorods can catalyze HER with low overpotentials of 107 and 113 mV at 500 mA cm^(-2)in alkaline water/seawater,respectively,surpassing Pt/C.Extended calculations and experiments show that the optimized Ni/WN@CP-90 achieves an optimal ΔG_(H*)and overpotential of 219 mV at 500 mA cm^(-2)in alkaline seawater,demonstrating the versatility of the WN support to promote HER activity.Notably,the anion exchange membrane water electrolyzer(AEMWE)constructed by Pt/WN@CP or Ni/WN@CP-90 with NiFe-LDH@NF demonstrates outstanding hydrogen production activity with excellent Faraday efficiency(~100%)and durability(120 h),indicating the potential application of WN-supported catalysts for efficient and stable seawater electrolysis.展开更多
基金financial support of the National Natural Science Foundation of China(22478450,22478451,22408408)Guangdong Basic and Applied Basic Research Foundation(2024A1515012565,2021A1515010167,2022A1515011196)+3 种基金Guangzhou Key R&D Program/Plan Unveiled Flagship Project(20220602JBGS02)Guangzhou Basic and Applied Basic Research Project(202201011449)Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202220,FC202216)100 Talent Research Foundation of Sun Yat-sen University(76110-12230029)。
文摘Designing efficient and durable hydrogen evolution reaction(HER)catalysts for seawater electrolysis is crucial for large-scale hydrogen production.Here,we introduce a theory-driven design of metal/WN electrocatalysts,with metal strongly coupled to lattice-matched WN.Theoretical calculations for Pt/WN reveal that W sites enhance H_(2)O adsorption/dissociation,optimizing Pt's H binding.The prepared Pt/WN@CP nanorods can catalyze HER with low overpotentials of 107 and 113 mV at 500 mA cm^(-2)in alkaline water/seawater,respectively,surpassing Pt/C.Extended calculations and experiments show that the optimized Ni/WN@CP-90 achieves an optimal ΔG_(H*)and overpotential of 219 mV at 500 mA cm^(-2)in alkaline seawater,demonstrating the versatility of the WN support to promote HER activity.Notably,the anion exchange membrane water electrolyzer(AEMWE)constructed by Pt/WN@CP or Ni/WN@CP-90 with NiFe-LDH@NF demonstrates outstanding hydrogen production activity with excellent Faraday efficiency(~100%)and durability(120 h),indicating the potential application of WN-supported catalysts for efficient and stable seawater electrolysis.