期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
基于YOLOv5s的轻量化森林火灾探测算法 被引量:2
1
作者 刘惠临 方琼 +3 位作者 江宇 魏华章 王涛 张树川 《中国安全科学学报》 北大核心 2025年第1期75-83,共9页
为解决当前基于深度学习的森林火灾探测算法存在结构复杂、规模庞大,且难以兼顾检测精度和效率的问题,提出一种基于YOLOv5s的轻量化森林火灾探测算法。首先,采用优化的背景差分技术消除背景图像中类火物体的干扰,减少分析图像所需的时间... 为解决当前基于深度学习的森林火灾探测算法存在结构复杂、规模庞大,且难以兼顾检测精度和效率的问题,提出一种基于YOLOv5s的轻量化森林火灾探测算法。首先,采用优化的背景差分技术消除背景图像中类火物体的干扰,减少分析图像所需的时间;其次,设计分组混洗策略优化常规卷积,并在特征提取的C3模块中融入高效通道注意力(ECA)机制和深度可分离卷积,增强图像特征提取与融合能力的同时有效降低模型的参数量;然后,采用动态非单调聚焦机制优化Wise-交并比(WIOU)损失函数,减少低质量样本产生的有害梯度;最后,在构建的森林火灾数据集上将所提算法与其他算法做充分的试验对比。结果表明:所提算法在各类场景均展现出良好的泛化性,对火焰目标的检测精度达到86.1%,较标准YOLOv5s检测精度提升2.7%,检测速度提升11.4%,有效降低了火灾误报率,增强了模型的检测性能。 展开更多
关键词 YOLOv5s 轻量化 森林火灾探测 深度可分离卷积 注意力 Wise-交并比(wiou)
原文传递
基于FPBW-YOLO v8的复杂场景下番茄果实识别方法
2
作者 顾文娟 刘浩状 +3 位作者 魏金 高文奇 阴艳超 刘孝保 《农业机械学报》 北大核心 2025年第8期467-478,共12页
番茄果实的快速准确检测是实现其智能采摘的重要前提,针对部署需求以及番茄图像背景复杂、枝叶遮挡和果实重叠等问题,提出了一种基于改进YOLO v8n的复杂场景下番茄果实识别方法。使用FasterNet作为YOLO v8n的主干特征提取网络,提高模型... 番茄果实的快速准确检测是实现其智能采摘的重要前提,针对部署需求以及番茄图像背景复杂、枝叶遮挡和果实重叠等问题,提出了一种基于改进YOLO v8n的复杂场景下番茄果实识别方法。使用FasterNet作为YOLO v8n的主干特征提取网络,提高模型的特征提取能力;通过在颈部网络中融合P2小目标检测分支和双向特征金字塔网络(Bidirectional feature pyramid network,BiFPN)结构,降低复杂背景的干扰以提高模型的检测精度;使用WIoU(Wise intersection over union)损失函数提高模型在遮挡、重叠情况下的果实定位精度,同时加快模型收敛;基于NCNN框架将模型部署到移动端进行测试。试验结果表明,FPBW-YOLO v8模型精确率、召回率、平均精度均值(mAP@0.5和mAP@0.5:0.95)分别达到97.9%、95.1%、98.3%和74.3%,相较于Faster R-CNN、SSD、YOLO v8n、YOLO v7、YOLO v5n和Rt-Detr均有明显优势,且模型内存占用量仅8.7 MB。在移动端上的测试结果表明,本文模型能够在计算资源有限的硬件设备上获得较高的检测精度,可以有效解决复杂场景下番茄果实的识别问题,为番茄采摘机器人的研发提供技术支持。 展开更多
关键词 番茄果实 目标检测 改进YOLO v8n FasterNet BiFPN wiou
在线阅读 下载PDF
基于MAFM-YOLOv8的学生课堂表现检测
3
作者 莫建文 姜贵昀 +1 位作者 袁华 梁豪昌 《计算机工程与设计》 北大核心 2025年第6期1825-1831,共7页
针对智慧教室场景中学生课堂表现检测遇到的目标尺度大小不一、容易出现遮挡、目标密集度高、重叠以及小目标等问题,提出一种基于MAFM-YOLOv8的学生课堂表现检测模型。提出一个多尺度自适应特征提取模块,增强模型对不同尺度特征信息的... 针对智慧教室场景中学生课堂表现检测遇到的目标尺度大小不一、容易出现遮挡、目标密集度高、重叠以及小目标等问题,提出一种基于MAFM-YOLOv8的学生课堂表现检测模型。提出一个多尺度自适应特征提取模块,增强模型对不同尺度特征信息的自适应特征提取能力,用深度可分离卷积代替普通卷积,减少模块中卷积的计算量;采用高效多尺度注意力模块,增强模型对小目标的特征提取能力;采用WIOU损失函数来增强模型在类别不均衡数据集上的训练效果,提升检测性能。实验结果表明,改进YOLOv8算法在学生课堂表现检测中mAP50达到了87.2%,相比原模型提升了3.2%,验证该方法可以有效提高检测精度。 展开更多
关键词 智慧教室 学生课堂表现检测 MAFM-YOLOv8 多尺度自适应特征提取模块 深度可分离卷积 高效多尺度注意力 wiou损失函数
在线阅读 下载PDF
基于坐标注意力和软化非极大值抑制的密集安全帽检测
4
作者 尹向雷 苏妮 +1 位作者 解永芳 屈少鹏 《现代电子技术》 北大核心 2025年第2期153-161,共9页
为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进... 为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进行优化,提升模型对密集小目标的检测精度。通过WIoU优化边界框损失函数,使得模型聚焦于困难样例而减少简单示例对损失值的贡献,提升模型的泛化性能。实验结果表明:与基准模型YOLOv5s相比,所提算法的mAP@0.5达到88.4%,提升了3.0%;mAP@0.5:0.95达到65.6%,提升了6.8%;在召回率和准确率上分别提升了2.4%和0.5%。所提算法为密集小目标的检测提供了一定参考。 展开更多
关键词 安全帽检测 坐标注意力机制 软化非极大值抑制 YOLOv5s wiou 边界框损失函数
在线阅读 下载PDF
改进YOLOv8n的轻量级小型无人机检测方法
5
作者 程擎 闫恒志 李彦冬 《科学技术与工程》 北大核心 2025年第28期12098-12107,共10页
无人机产业的快速发展,使得非法飞行活动日益增多,对公共安全构成了潜在威胁。因此,对无人机的快速且准确的目标检测成为了至关重要的任务。鉴于现有的基于深度学习的目标检测方法在检测精度与速度间权衡不足,以及模型体积过大,难以适... 无人机产业的快速发展,使得非法飞行活动日益增多,对公共安全构成了潜在威胁。因此,对无人机的快速且准确的目标检测成为了至关重要的任务。鉴于现有的基于深度学习的目标检测方法在检测精度与速度间权衡不足,以及模型体积过大,难以适配边缘检测设备等问题,提出基于改进YOLOv8n的小型无人机检测模型YOLO-Drone。首先,将主干网络中的C2f模块替换为MobileNetv3网络中的bneck模块,以实现更轻量化的特征提取,同时,部分卷积操作采用PConv的模式,减少冗余计算;其次,为了更好保留无人机的细节特征,在主干网络中引入SPD-Conv来实现下采样,增强了模型对小目标的识别能力;然后,移除大目标检测头,从而专注于对小目标的检测,并缩减网络宽度以降低模型复杂度;最后,引用WIoU作为边界框回归损失函数,提升目标位置预测的精度。基于公开数据集的实验结果表明:改进后的模型mAP@0.5达到了94.1%,相比YOLOv8n提升了0.8%,浮点运算量和参数量分别减少了40%、70%。该模型在进一步轻量化的同时兼顾了检测精度,为边缘设备部署提供了有效参考。 展开更多
关键词 轻量化 小目标检测 无人机(UAV) YOLOv8n MobileNetV3 SPD-Conv wiou
在线阅读 下载PDF
基于YOLOv8的猪只计数目标检测
6
作者 欧阳建权 唐欢容 鲁嘉雄 《湘潭大学学报(自然科学版)》 2025年第5期20-31,共12页
猪只计数是大规模养猪场在养殖过程中的一项非常重要的工作.在复杂的猪圈环境中,由于猪的应激反应和诸多的障碍物,想要进行准确且自动化的计数是一个非常困难的工作.该文提出了一种基于YOLOv8的猪只数量目标检测模型(SCS-YOLOv8),旨在... 猪只计数是大规模养猪场在养殖过程中的一项非常重要的工作.在复杂的猪圈环境中,由于猪的应激反应和诸多的障碍物,想要进行准确且自动化的计数是一个非常困难的工作.该文提出了一种基于YOLOv8的猪只数量目标检测模型(SCS-YOLOv8),旨在提高养殖场中猪只计数的准确性和效率.首先,该模型在第5层的C2f层融入Swin Transformer模块,增强模型的特征提取能力.同时,在第10层增加卷积块注意力模块(CBAM)注意力机制,增强模型对小目标和遮挡目标的检测能力,提升模型的鲁棒性.此外,还引入了简化的空间金字塔池化快速(SimSPPF)模块降低计算量,提高了推理速度,采用基于动态非单调聚焦机制的边界框回归(WIoU)损失函数更好地处理猪只的遮挡问题和目标较小的问题,提高模型在复杂场景下的检测性能,并结合软非极大值抑制方法(Soft-NMS)防止两个重合度过高的目标漏检.实验证明,该模型在自制数据集和科大讯飞公开数据集上均取得了优异的性能,其中在自有数据集上的mAP50-95值达到了77.2%,较初始YOLOv8x提高了4.8%,相较于其他YOLO模型都有不同程度的提升.同时该模型在科大讯飞的数据集上也有着不错的表现,证明了其良好的泛用性和鲁棒性. 展开更多
关键词 TRANSFORMER 猪只计数 CBAM SimSPPF wiou Soft-NMS
在线阅读 下载PDF
基于SimAM注意力机制的DCN-YOLOv5水下目标检测
7
作者 刘向举 刘洋 蒋社想 《重庆工商大学学报(自然科学版)》 2025年第2期63-70,共8页
目的针对水下环境复杂,水下目标因光线折射导致的目标边界模糊或外观、形状可能会发生非刚性形变,使水下目标检测困难的问题,提出了一种基于SimAM注意力机制的DCN-YOLOv5水下目标检测方法。方法首先,采用YOLOv5所使用的双向金字塔网络(B... 目的针对水下环境复杂,水下目标因光线折射导致的目标边界模糊或外观、形状可能会发生非刚性形变,使水下目标检测困难的问题,提出了一种基于SimAM注意力机制的DCN-YOLOv5水下目标检测方法。方法首先,采用YOLOv5所使用的双向金字塔网络(BiFPN,Bi-directional Feature Pyramid Network)在多个尺度上提取和融合特征信息,从而提高目标辨别的准确度;其次,针对水下目标的外观、形状变化问题,将C3模块中的CBS模块结合可变形卷积(DCN,Deformable Convolution Network),提出DBS模块并组成D3模块替换部分C3模块,以适应水下目标的外观、形状变化;同时,融入加权注意力机制(SimAM),自适应地调节模型的关注度,进一步在复杂场景下增强特征表达能力;最后,考虑目标边界模糊,为改善目标定位精度,采用WIoU(Wise-IoU)损失函数来替换交叉熵损失,能够更好地适应不同目标类型和尺寸的特点,提高算法鲁棒性。结果实验结果表明:DCN-YOLOv5可以达到87.57%的平均精度(mAP),检测效果优于YOLOv5网络和其他经典网络,平均每张图像的识别时间仅为24.5 ms。结论通过实验结果可以证明模型在检测精度明显提升的同时兼顾检测的实时性,对水下目标检测用于实际用途有着一定的参考价值。 展开更多
关键词 水下目标检测 SimAM注意力机制 可变形卷积 wiou
在线阅读 下载PDF
基于改进YOLO v5s的叶菜病虫害检测算法研究
8
作者 贺洪江 刘毅祥 王双友 《江苏农业科学》 北大核心 2025年第5期244-250,共7页
叶菜病虫害的早期识别是提高叶菜产量和质量的重要保障,为提高常见叶菜病虫的检测精度,针对实际生产中的复杂环境,以YOLO v5s为基准模型,提出一种改进的FV-YOLO v5s模型。首先,在主干网络中融合CA注意力机制模块与C3特征提取模块,形成了... 叶菜病虫害的早期识别是提高叶菜产量和质量的重要保障,为提高常见叶菜病虫的检测精度,针对实际生产中的复杂环境,以YOLO v5s为基准模型,提出一种改进的FV-YOLO v5s模型。首先,在主干网络中融合CA注意力机制模块与C3特征提取模块,形成了C3CA模块以增强叶菜病虫害的特征提取能力。接着在颈部网络中使用Slim-neck范式设计,高效提取图像中小尺寸目标的特征,增强特征融合的效率。最后用WIoU损失对原损失函数CIoU进行替换,更快地达到收敛状态并提升模型检测性能。结果表明,新模型的精度、召回率和平均精度均值分别达到了92.2%、91.5%、94.8%。改进后的模型FV-YOLO v5s对比原YOLO v5s模型算法,精度、召回率、平均精度均值分别提高2.7、1.4、1.8百分点,优于现有的识别网络,包括YOLO v7、YOLO v8、Faster R-CNN等模型。FV-YOLO v5s模型适用于现代农业生产环境,有助于快速识别和检测叶菜病虫害,且该研究为智慧农业中的叶菜高品质和高产量提供了依据,从而最大限度地减少经济损失。 展开更多
关键词 叶菜病虫害 YOLO v5s CA注意力机制 Slim-neck wiou损失函数
在线阅读 下载PDF
基于YOLOv8-ECW的井下人员行为实时检测算法 被引量:4
9
作者 骆津津 陈伟 +2 位作者 田子建 张帆 刘毅 《矿业科学学报》 北大核心 2025年第2期316-327,共12页
针对现有煤矿井人员行为检测模型存在精度低、计算量大等问题,提出一种基于YOLOv8-ECW的井下人员行为实时检测算法。算法在YOLOv8n的基础上对骨干网络进行改进,提出多尺度卷积模块EMSC,再与C2f卷积相结合设计出C2f_EMSC模块,有效捕获目... 针对现有煤矿井人员行为检测模型存在精度低、计算量大等问题,提出一种基于YOLOv8-ECW的井下人员行为实时检测算法。算法在YOLOv8n的基础上对骨干网络进行改进,提出多尺度卷积模块EMSC,再与C2f卷积相结合设计出C2f_EMSC模块,有效捕获目标的多尺度特征,减少模型的计算量、参数量;在网络中引入CGBlock下采样模块融合全局的上下文信息,引入WIoU损失函数提升检测框的定位精度和模型收敛速度。在矿井人员行为检测数据集上进行实验,结果表明:①相比于基线YOLOv8n模型,YOLOv8-ECW模型对各类目标平均精度均值mAP50为92.4%,上升了2.1%;mAP50-95为75.4%,上升了4.0%。②YOLOv8-ECW的检测速度为238 F/s,较YOLOv8n模型提高了5 F/s。③与YOLOv6、YOLOv7等主流网络模型相比,YOLOv8-ECW模型的检测性能最佳且具有较好的鲁棒性。 展开更多
关键词 煤矿井下 YOLOv8 行为检测 C2f_EMSC wiou 特征融合
在线阅读 下载PDF
基于YOLOv5s的舰船小目标检测方法研究
10
作者 师红宇 蔡自桂 +1 位作者 杜文 张哲于 《舰船电子工程》 2025年第2期34-38,73,共6页
海面舰船目标检测容易受陆地、海浪等背景的干扰。针对舰船小目标检测精度低和鲁棒性差的问题,提出一种改进的舰船目标检测模型CWMA-YOLOv5s。首先,设计具有多分支跨层连接的C2f模块丰富多目标舰船梯度流信息。然后,设计并实现了残差多... 海面舰船目标检测容易受陆地、海浪等背景的干扰。针对舰船小目标检测精度低和鲁棒性差的问题,提出一种改进的舰船目标检测模型CWMA-YOLOv5s。首先,设计具有多分支跨层连接的C2f模块丰富多目标舰船梯度流信息。然后,设计并实现了残差多头自注意力融合模块优化特征融合效果。其次,改进Predection网络,设计SCP结构,提高了舰船目标的显著度。最后,引入改进的WIOU损失函数解决CIOU损失函数带来的梯度爆炸和模型提前退化问题。实验结果表明,与YOLOv5s模型相比,该模型在MASATI-v2数据集上,精度提高了13.1%,召回率提高了12.8%,mAP@50提高了6.8%。与其他同类型检测算法相比,该算法拥有更好的学习能力,整体检测精度达到了82.3%,具有较强的鲁棒性。 展开更多
关键词 舰船检测 多头自注意力机制 空间上下文金字塔 wiou损失函数
在线阅读 下载PDF
基于改进YOLOv8的自动驾驶交通标志检测算法
11
作者 郑凯东 戴典珍 《信息技术与信息化》 2025年第6期11-14,共4页
随着自动驾驶技术的迅速发展,准确且高效的交通标志检测成为确保行车安全的关键,为确保自动驾驶车辆在复杂道路环境中对交通标志有高效的识别能力,文章提出了一种基于改进YOLOv8的交通标志检测算法。在Head部分的每个C2f层之后引入注意... 随着自动驾驶技术的迅速发展,准确且高效的交通标志检测成为确保行车安全的关键,为确保自动驾驶车辆在复杂道路环境中对交通标志有高效的识别能力,文章提出了一种基于改进YOLOv8的交通标志检测算法。在Head部分的每个C2f层之后引入注意力机制CBAM,其次,利用动态非单调聚焦系数优化的WIoU损失函数,通过给小目标赋予更高的权重,更好评估小目标的分割结果,以此提升对交通标志的检测准确性。实验证明,相比YOLOv8模型,改进后的YOLOv8-CW模型精确度提高1.8%,MPA50-95提升了2.4%。。 展开更多
关键词 深度学习 自动驾驶 卷积块注意模块 聚焦系数 wiou损失函数
在线阅读 下载PDF
基于改进YOLOv8n的轻量化辣椒花目标检测方法 被引量:1
12
作者 匡敏球 李旭 +5 位作者 陈熵 刘大为 向阳 刘峰 吴艳华 谢方平 《农业工程学报》 北大核心 2025年第12期198-207,共10页
辣椒花目标检测是机械授粉的基础,为提高自然环境下辣椒花目标检测的精度,该研究提出了一种基于改进YOLOv8n的轻量化辣椒花目标检测模型YOLOv8n-Chili Flower。首先,在Neck层引入高效多尺度轻量化注意力机制模块EMA(efficient multi-sca... 辣椒花目标检测是机械授粉的基础,为提高自然环境下辣椒花目标检测的精度,该研究提出了一种基于改进YOLOv8n的轻量化辣椒花目标检测模型YOLOv8n-Chili Flower。首先,在Neck层引入高效多尺度轻量化注意力机制模块EMA(efficient multi-scale attention),提升模型对辣椒花特征的识别能力,从而增强检测的灵敏度和准确性;其次,在模型的Backbone层将C2f模块替换为GSConv(group separable convolution)模块,减少不必要的信息冗余,防止特征信息丢失,在提高注意力机制模块效果的同时,降低了模型的复杂度;最后,采用WIoU(weighted intersection over union)损失函数替换CIoU(complete intersection over union)损失函数,优化回归损失的计算,并引入平滑项更准确地计算边界框的重叠度,实现模型更精确匹配辣椒花的形状和分布,从而加快了模型收敛并提高检测精度。结果表明,YOLOv8n-Chili Flower模型的召回率和平均精度均值分别为94.6%和95.9%,较原始YOLOv8n模型分别提升了0.9和0.6个百分点,浮点计算量、参数量和模型大小分别为7.2 G、2.39 M和5.0 MB,较原模型分别降低了12.20%、20.60%和20.63%。与YOLOv5s、YOLOv7tiny、YOLOv8s和YOLOv9主流模型相比,改进模型能够更好地平衡平均精度均值和轻量化,将改进模型部署至NVIDIA Jetson AGX Orin计算平台上开展真实场景测试,正确检测率和检测帧率分别为83.25%和99.02帧/s,具有较好的正确检测率和检测速度。该研究可为辣椒机械授粉的花朵实时检测和轻量化部署提供一定的技术支持。 展开更多
关键词 YOLOv8n 目标检测 辣椒花 EMA注意力机制 GSConv模块 wiou损失函数 轻量化模型
在线阅读 下载PDF
基于PEW-YOLOv8的内河船舶目标检测方法 被引量:1
13
作者 曹智远 马勇 +1 位作者 成雪夫 胡文韬 《交通信息与安全》 北大核心 2025年第2期36-43,共8页
内河船舶目标检测中,众多检测对象属于小目标范畴,其在图像中的像素占比有限,且由于水域环境干扰等问题,导致检测精度不足,误检、漏检现象频发,为此研究了PEW-YOLOv8(YOLOv8+P2检测层+EfficientNetV2+WIoUinner)目标检测算法。新增160&#... 内河船舶目标检测中,众多检测对象属于小目标范畴,其在图像中的像素占比有限,且由于水域环境干扰等问题,导致检测精度不足,误检、漏检现象频发,为此研究了PEW-YOLOv8(YOLOv8+P2检测层+EfficientNetV2+WIoUinner)目标检测算法。新增160×160分辨率的P2浅层次小目标检测层,通过32维特征空间重构实现多尺度特征的动态权重分配,设计高低层特征的双向交互机制,增强对小型船舶目标的特征提取能力;为应对多层次目标检测头导致的模型训练参数量增加的难题,采用改进的EfficientNetV2高效架构优化策略,引入Stems模块采用GELU激活函数避免梯度爆炸和训练不稳定,训练阶段保留扩展4倍的通道数,简化卷积结构显著加速训练过程,同时保证模型训练质量;设计动态非单调聚焦机制的WIoUinner损失函数,构建具有一定尺度差异的辅助预测框,加速边界框收敛速度,使模型在预测框与真实框重合良好时更注重中心点之间的距离,减轻几何度量的惩罚,从而提升模型的泛化能力。通过融合公开的Seaships数据集与自建数据集形成的数据集进行算法与实验验证,结果表明:同YOLOv10相比,PEW-YOLOv8平均检测精度达到94.8%,提升了3%,计算复杂度显著降低,FLOPs优化至3.7 G,降幅达43.1%,展现了在内河船舶目标检测精度和效率方面的优势;热力图分析进一步凸显了模型能有效聚焦内河船舶特征,验证了算法在复杂内河场景下的检测鲁棒性。 展开更多
关键词 智能船舶 内河船舶 PEW-YOLO 目标检测 wiou
在线阅读 下载PDF
基于FEW-YOLOv8遥感图像目标检测算法 被引量:1
14
作者 席阳丽 屈丹 +1 位作者 王芳芳 都力铭 《郑州大学学报(工学版)》 北大核心 2025年第4期62-69,共8页
针对遥感图像目标检测任务中进行特征提取时缺少小目标信息,特征融合过程中部分信息丢失,小目标特征信息不明显,导致小目标检测精度不高的问题,提出了一种基于FEW-YOLOv8模型的遥感图像目标检测算法。首先,优化骨干网络架构,使用Faster... 针对遥感图像目标检测任务中进行特征提取时缺少小目标信息,特征融合过程中部分信息丢失,小目标特征信息不明显,导致小目标检测精度不高的问题,提出了一种基于FEW-YOLOv8模型的遥感图像目标检测算法。首先,优化骨干网络架构,使用FasterNet骨干网络,更有效地提取了遥感图像中小目标的空间特征,使得网络模型更专注于微小目标,从而提升小目标检测精度。其次,使用EMA注意力与C2f构建全新的C2f_EMA模块,替换Neck结构中的C2f模块,在融合特征前进行特征注意力加强操作,使网络模型更突出特征信息中小目标部分,有效解决特征融合过程中小目标特征丢失问题。最后,采用带有动态非单调FM的WIoUv3作为边界框的损失函数,提高了模型的边界框定位精度,并且提升了对小目标的检测性能。实验结果显示:在NWPU VHR-10数据集上经过优化的YOLOv8算法的mAP 50相较于原始YOLOv8算法提高了7.71百分点,在HRSC2016和DOTA v1.0上分别提高了9.70百分点和12.32百分点,证明所提算法能够有效提升遥感图像中小目标的检测精度。 展开更多
关键词 遥感图像 YOLOv8 FasterNet骨干网络 EMA注意力机制 wiou损失函数
在线阅读 下载PDF
基于改进YOLOv8n的隧道内异物检测算法 被引量:3
15
作者 桂佳扬 王顺吉 +1 位作者 周正康 唐加山 《计算机应用》 北大核心 2025年第2期655-661,共7页
针对当前隧道内异物检测存在人工巡检成本高、效率低等问题,提出一种基于改进YOLOv8n的隧道内异物检测算法。首先,提出融入坐标注意力(CA)机制的C2f_CA模块,通过将位置信息嵌入通道注意力,增强网络对图像在空间上的特征分布的关注,从而... 针对当前隧道内异物检测存在人工巡检成本高、效率低等问题,提出一种基于改进YOLOv8n的隧道内异物检测算法。首先,提出融入坐标注意力(CA)机制的C2f_CA模块,通过将位置信息嵌入通道注意力,增强网络对图像在空间上的特征分布的关注,从而增强网络的特征提取能力;其次,借鉴高分辨率网络的思想,提出新的特征融合模块HRNet_Fusion(High Resolution Net)将提取的不同分辨率特征图作为4个并行分支输入网络,并经过多次上、下采样和融合操作得到全面且准确的特征信息,从而显著提升在小目标检测和特征信息融合方面的性能;最后,引入WIoU(Wise-IoU)损失函数降低低质量样本对网络的不良梯度影响,进一步提高模型的检测精度。实验结果表明,在隧道异物数据集上,改进算法的平均精度均值(mAP@0.5)为79.9%,模型大小为6.0 MB,与YOLOv8n算法相比,mAP@0.5提升了6个百分点,模型大小减少了0.2 MB,模型参数量减少了0.379×10~6。 展开更多
关键词 目标检测 异物检测 YOLOv8n 坐标注意力机制 高分辨率网络 wiou损失函数
在线阅读 下载PDF
基于机器视觉的木玩具零件缺陷检测技术研究 被引量:2
16
作者 吴茂俊 林云峰 +1 位作者 沈洋 陈洪立 《自动化与仪表》 2025年第3期86-91,共6页
针对木玩具零件图像背景复杂、纹理干扰、缺陷形状多样等问题,提出改进的Yolov8缺陷检测算法。算法在PANet结构采用多层自适应空间融合机制(MASF),自适应调整权重,融合深浅层特征,提升特征提取能力,减少误检漏检;引入BRA注意力机制,增... 针对木玩具零件图像背景复杂、纹理干扰、缺陷形状多样等问题,提出改进的Yolov8缺陷检测算法。算法在PANet结构采用多层自适应空间融合机制(MASF),自适应调整权重,融合深浅层特征,提升特征提取能力,减少误检漏检;引入BRA注意力机制,增强抗背景和木纹干扰能力;采用WIoU作为边界损失函数,优化边界框损失,提高目标回归精度和收敛速度。在木玩具零件缺陷数据集验证,相比原YOLOv8模型,mAP50提升11%,mAP50-95提升2.4%,较主流单阶段检测模型检测精度均有提高,验证了算法的高效性。 展开更多
关键词 缺陷检测 PANet 多层自适应空间融合 注意力机制 wiou
在线阅读 下载PDF
改进YOLOv8n的MEMS缺陷检测方法 被引量:3
17
作者 代培康 李翰山 《半导体技术》 北大核心 2025年第2期170-180,共11页
微电子机械系统(MEMS)器件在高温、强振动以及高过载下易出现引线断开、管腔杂质等缺陷,造成搭载MEMS器件的设备发生故障,对MEMS器件中的这些缺陷进行快速、精准的检测成为亟待解决的难题。基于MEMS金相图像,提出了一种改进YOLOv8n的MEM... 微电子机械系统(MEMS)器件在高温、强振动以及高过载下易出现引线断开、管腔杂质等缺陷,造成搭载MEMS器件的设备发生故障,对MEMS器件中的这些缺陷进行快速、精准的检测成为亟待解决的难题。基于MEMS金相图像,提出了一种改进YOLOv8n的MEMS缺陷检测方法。在Backbone层构建全新的C2f_Faster-EMA模块,使网络能够更高效地处理缺陷的多尺度信息,突出小目标缺陷特征;在Neck层的C2f后嵌入三分支注意力机制,加强缺陷权重的同时抑制背景干扰;调整网络检测头,以提高小目标缺陷检测能力;采用WIoU作为改进网络的损失函数,可平衡检测锚框的惩戒力度。实验结果表明:提出的算法可对MEMS两类缺陷进行快速精准的检测,检测准确率达到94.8%。相较于基线模型,模型的参数量减少了近44.9%,且每秒检测帧数达到了118,满足实时检测需求。 展开更多
关键词 YOLOv8n 缺陷检测 轻量级网络 三分支注意力机制 wiou
原文传递
基于改进的小目标交通标志检测算法研究 被引量:1
18
作者 韩东旭 谢雨飞 《电子测量技术》 北大核心 2025年第6期28-37,共10页
为了解决交通标志小目标检测所存在的漏检、误检和准确率低等问题,本文提出了一种小目标交通标志检测模型YOLOv8-Faster-Ghost-GAM。该算法首先在主干网络的最后一个C2f模块中引入了全局注意力机制(GAM),增强关键特征并抑制无关信息,显... 为了解决交通标志小目标检测所存在的漏检、误检和准确率低等问题,本文提出了一种小目标交通标志检测模型YOLOv8-Faster-Ghost-GAM。该算法首先在主干网络的最后一个C2f模块中引入了全局注意力机制(GAM),增强关键特征并抑制无关信息,显著提升了目标检测中的小目标和复杂场景下的识别能力;其次,将主干网络中的每个C2f模块替换为Fasternet,以减少模型参数量,并将普通卷积替换为幻影卷积Ghost,使用低廉的线性变换较少计算量;最后,采用WiOU损失函数,有效提升对低质量样本的识别,精度提升了1.6%,召回率提升了3.2%,证明了所作的改进的有效性。 展开更多
关键词 FasterNet GAM 小目标交通标志检测 YOLOv8 GHOST wiou
原文传递
基于深度学习的工业轴承缺陷检测算法研究 被引量:1
19
作者 张彪 荀荣科 许家忠 《仪器仪表学报》 北大核心 2025年第4期136-149,共14页
针对现有轴承缺陷检测算法准确率低、存在误检以及漏检现象严重的问题,为解决这些问题,提出了一种基于YOLOv8n的轴承缺陷检测算法(LASW-YOLOv8)。该算法在YOLOv8n的基础上,引入了轻量化且高效的LiteShiftHead检测头,结合SPConv、REG和CL... 针对现有轴承缺陷检测算法准确率低、存在误检以及漏检现象严重的问题,为解决这些问题,提出了一种基于YOLOv8n的轴承缺陷检测算法(LASW-YOLOv8)。该算法在YOLOv8n的基础上,引入了轻量化且高效的LiteShiftHead检测头,结合SPConv、REG和CLS模块,提升了特征提取、目标框回归和类别分类的效率与准确性。此外,算法还引入了自适应旋转卷积核模块(ARConv),增强了对多方向缺陷的检测能力;颈部网络优化模块(SAF)进一步提升了特征提取效率;同时采用Inner-WIoU损失函数,通过优化边界框定位精度并增强对小目标及复杂形状缺陷的检测能力。实验结果表明,LASW-YOLOv8算法在多个性能指标上优于其他主流算法。该算法的准确率和召回率分别提升至97.2%和96.6%,相较于YOLOv8n分别提高了3.4%和4.5%。同时,mAP0.5和mAP0.5:0.95分别达到了98.9%和73.3%,并且在运行速度上实现了83 fps。这些结果充分证明了所提改进算法的有效性,不仅能有效减少误检和漏检现象,还满足了工业检测对高准确率和实时性的要求。此外,在东北大学公共数据集(NEU-DET)的实验中,LASW-YOLOv8算法在准确率、召回率、mAP0.5和mAP0.5:0.95这4个关键指标上均表现最佳,分别为79.3%、79.9%、84.1%和49.1%,优于其他主流算法。这一表现证明了LASW-YOLOv8算法具有出色的泛化能力和鲁棒性。 展开更多
关键词 轴承缺陷检测 LASW-YOLOv8 LiteShiftHead ARConv Inner-wiou损失函数
原文传递
改进YOLOv8n的无人机航拍图像检测算法 被引量:4
20
作者 梁秀满 贾梓涵 +2 位作者 刘振东 于海峰 李然 《电光与控制》 北大核心 2025年第1期34-40,67,共8页
针对无人机航拍图像中目标小、尺度变化大和背景干扰等因素导致检测精度低、定位不准确的问题,提出一种改进YOLOv8n的无人机航拍图像目标检测算法。首先改进C2f模块,利用可变形卷积(DCN)替换其Bottleneck中的卷积以适应航拍图像中物体... 针对无人机航拍图像中目标小、尺度变化大和背景干扰等因素导致检测精度低、定位不准确的问题,提出一种改进YOLOv8n的无人机航拍图像目标检测算法。首先改进C2f模块,利用可变形卷积(DCN)替换其Bottleneck中的卷积以适应航拍图像中物体的形变和尺度变化,同时,在主干网络引入LSK注意力机制,实现动态调整空间感受野,从而在特征提取阶段更灵活地适应不同目标对背景信息需求的差异;然后改进颈部网络,增加一个较浅的检测层并移除大目标检测层,使网络能更有效地捕获小目标的特征以提升检测精度;最后引入WIoU损失函数,使模型更加关注低质量样本,得到更高的检测精度。在VisDrone2019数据集上进行对比实验和消融实验,mAP_(50)值较基线算法模型提升了5.2个百分点,参数量减少了20%,检测速度(FPS)达到87帧/s,能够满足实时性的检测需求。与主流算法进行对比实验,所提算法表现优于目前的主流算法。在DOTA数据集上进行泛化实验,mAP_(50)值提升了1.7个百分点,证明所提算法具有通用性。 展开更多
关键词 无人机图像 YOLOv8n 注意力机制 可变形卷积 wiou
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部