Combining the advantages of high efficiency,low-pressure drop,and large throughput,the pore arrayenhanced tube-in-tube microchannel(PA-TMC) is a promising microreactor for industrial applications.However,most of the m...Combining the advantages of high efficiency,low-pressure drop,and large throughput,the pore arrayenhanced tube-in-tube microchannel(PA-TMC) is a promising microreactor for industrial applications.However,most of the mass transfer takes place in the upstream pore region,while the contribution of the downstream annulus is limited.In this work,helical wires were introduced into the annulus by adhering to the outer surface of the inner tube.Mixing behavior and mass transfer of liquid-liquid twophase flow in PA-TMC with different helical wires have been systematically studied by a combination of experiments and volume of fluid(VOF) method.The introduction of helical wires improves the overall volumetric mass transfer coefficient KLa by up to 133% and the mass transfer efficiency E by up to 117%.The simulation results show that the helical wire brings extra phase mixing regions and increases the specific interface area,while accelerating the fluid flow and expanding the area of enhanced turbulent dissipation rate.Influences of helical wires in various configurations are compared by the comprehensive index I concerning the pressure drop and mass transfer performance simultaneously and a new correlation between KLa and specific energy consumption φ is proposed.This research deepens the understanding of the mixing behavior and mass transfer in the PA-TMCs and provides practical experience for the process intensification of microchannel reactors.展开更多
We theoretically investigate the electronic structure of cylindrical magnetic topological insulator quantum wires in MnBi_(2)Te_(4).Our study reveals the emergence of topological surface states in the ferromagnetic ph...We theoretically investigate the electronic structure of cylindrical magnetic topological insulator quantum wires in MnBi_(2)Te_(4).Our study reveals the emergence of topological surface states in the ferromagnetic phase,characterized by spin-polarized subbands resulting from intrinsic magnetization.In the antiferromagnetic phase,we identify the coexistence of three distinct types of topological states,encompassing both surface states and central states.展开更多
The performance and price of copper-based micro linear products are determined by the diameter uniformity.How to accurately detect the wire diameter of long-length copper based micro linear products without cutting or...The performance and price of copper-based micro linear products are determined by the diameter uniformity.How to accurately detect the wire diameter of long-length copper based micro linear products without cutting or damage has always been a technical concern for production enterprises.Herein,a novel approach was developed for nondestructive detection of the average diameter at any given segment of a long copper wire by assessing the adsorption capacity of arginine on its surface.The amount of adsorbent on the surface of the copper wire exhibits a positive correlation with the area,which can be detected by extractive electrospray ionization mass spectrometry(EESI-MS)after online elution with ammonia.The experimental results demonstrated that the analysis can be completed within 15 min,with a good linear relationship between copper wires with different diameters and the adsorption capacity of arginine.The linear correlation coefficient R2was 0.995,the relative standard deviation was 1.10%-2.81%,and the detection limit reached 2.5μm(length of segment=4 cm),showing potential applications for facile measurement of the average diameter of various metal wires.展开更多
The topological states of the two-leg and three-leg ladders formed by two trivial quantum wires with different lattice constants are theoretically investigated. Firstly, we take two trivial quantum wires with a lattic...The topological states of the two-leg and three-leg ladders formed by two trivial quantum wires with different lattice constants are theoretically investigated. Firstly, we take two trivial quantum wires with a lattice constant ratio of 1:2 as an example. For the symmetric nearest-neighbor intra-chain hopping two-leg ladder, the inversion symmetry protected topological insulator phase with two degenerate topological edge states appears. When the inversion symmetry is broken, the topological insulators with one or two topological edge states of different energies and topological metals with edge states embedded in the bulk states could emerge depending on the filling factor. The topological origin of these topological states in the two-leg ladders is the topological properties of the Chern insulators and Chern metals. According to the arrangement of two trivial quantum wires, we construct two types of three-leg ladders. Each type of the three-leg ladder could be divided into one trivial subspace and one topological nontrivial subspace by unitary transformation. The topological nontrivial subspace corresponds to the effective two-leg ladder model. As the filling factor changes, the system could be in topological insulators or topological metals phases. When the two-leg ladder is constructed by two trivial quantum wires with a lattice constant ratio of 1:3 and 2:3, the system could also realize rich topological states such as the topological insulators and topological metals with the topological edge states. These rich topological states in the two-leg and three-leg ladders could be confirmed by current experimental techniques.展开更多
304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observati...304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observation techniques,the volume fraction of martensite,modes of grain deformation in distinct regions,and the phase relationship between austenite and martensite were comprehensively characterized.In addition,a finite element simulation with representative volume elements specific to different zones also offers insights into strain responses during the drawing process.Results from the first-pass drawing reveal that there exists a higher volume fraction of martensite in the central region of 304H austenitic stainless steel wire compared to edge areas.This discrepancy is attributed to a concentrated presence of shear slip system{111}<110>γcrystallographic orientation,primarily accumulating in the central region obeying the Kurdjumov-Sachs path.Subsequent to the second drawing pass,the cumulative shear deformation within distinct regions of the steel wire became more pronounced.This resulted in a progressive augmentation of the volume fraction of martensite in both the central and peripheral regions of the steel wire.Concurrently,this led to a discernible elevation in the overall residual magnetism of the steel wire.展开更多
Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This impo...Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This imposes a reevaluation of the drawing procedure for constructing field curves with a constant field values around multiple parallel electrical conducting wires. To achieve this, we employ methods akin to those used for creating contours on topographical maps, ensuring a consistent numerical field value along the entire length of the field curves. Subsequent calculations will be conducted for scenarios where wires are not parallel.展开更多
The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niob...The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niobium-titanium superconductors.The potential of replacing the Nb barrier with a low-cost iron(Fe)barrier for multifilament MgB2 superconducting wires is investigated in this manuscript.Therefore,MgB2 wires with Fe barrier sintered with different temperatures are studied(from 650°C to 900°C for 1 h)to investigate the non-superconducting reaction phase of Fe-B.Their superconducting performance including engineering critical current density(Je)and n-value are tested at 4.2 K in various external magnetic fields.The best sample sintered at 650°C for 1 h has achieved a Je value of 3.64×10^(4) A cm^(−2) and an n-value of 61 in 2 T magnetic field due to the reduced formation of Fe2B,better grain connectivity and homogenous microstructure.For microstructural analysis,the focused ion beam(FIB)is utilised for the first time to acquire three-dimensional microstructures and elemental mappings of the interface between the Fe barrier and MgB2 core of different wires.The results have shown that if the sintering temperature can be controlled properly,the Je and n-value of the wire are still acceptable for magnet applications.The formation of Fe2B is identified along the edge of MgB2,as the temperature increases,the content of Fe2B also increases which causes the degradation in the performance of wires.展开更多
This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with...This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel.展开更多
Magnesium is an excellent material in terms of biocompatibility and its corrosion products can serve as an active source for new bone formation.However,localized corrosion and H_(2)generation limit the potential of Mg...Magnesium is an excellent material in terms of biocompatibility and its corrosion products can serve as an active source for new bone formation.However,localized corrosion and H_(2)generation limit the potential of Mg-based implants.Utilizing low-alloyed Mg-Zn wires can strongly reduce problems with large H_(2)bubbles and improve the mechanical properties considerably while maintaining excellent long-term biocompatibility.Acidic pickling and a polymer coating can be effectively used to lower the rate of in vivo degradation.In this work,microstructural,mechanical,and in vitro characterization of 250μm and 300μm extruded wires made from ultra-pure Mg,commercially pure Mg,Mg-0.15Zn,Mg-0.4Zn and Mg-1Zn was performed.Additionally,Mg-0.4Zn wires together with a variant coated with a copolymer of L-lactide andε-caprolactone were tested in vivo on artificially damaged Wistar rat femurs.Based on the observed Mg-induced osteogenesis,polymer-coated Mg wires with a small addition of Zn are a perspective material for bone-support applications,such as cerclage and fixation wires.展开更多
In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced...In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.展开更多
The texture evolution of cold drawing copper wires produced by continuous casting was measured by X-ray diffractometry and electron back-scatter diffractometry,and was simulated using Taylor model.The results show tha...The texture evolution of cold drawing copper wires produced by continuous casting was measured by X-ray diffractometry and electron back-scatter diffractometry,and was simulated using Taylor model.The results show that in the drawn poly-crystal copper wires produced by traditional continuous casting,111 and 100 duplex fiber texture forms,and with increasing strain,the intensities of 111 and 100 increase.In the drawn single-crystal copper wires produced by Ohno continuous casting,100 rotates to 111,and there is inhomogeneous distribution of fiber texture along radial direction of the wires,which is caused by the distribution of shear deformation.Compared with 100,111 fiber texture is more stable in the drawn copper wires.Comparison of the experimental results with the simulated results shows that the simulation by Taylor model can analyze the texture evolution of drawn copper wires.展开更多
Micron-scale molybdenum(Mo)wires are vital in numerous technological applications,including micro-electromechanical systems and nanodevices.Understanding their mechanical behavior under cyclic torsion loading is criti...Micron-scale molybdenum(Mo)wires are vital in numerous technological applications,including micro-electromechanical systems and nanodevices.Understanding their mechanical behavior under cyclic torsion loading is critical in designing reliable and durable components.This work investigates the mechanical behavior and fracture characteristics of micron Mo wires under various torsional loading conditions,including monotonic,symmetric,and asymmetric cyclic torsion.The results reveal that the fractures observed in Mo wires exhibit a relatively planar characteristic with noticeable clockwise river-patterned cleavage steps under monotonic torsion,mirroring the direction of the torsional stress applied during the experiment.In terms of symmetric cyclic torsion,it is notable that cyclic softening becomes increasingly pronounced as the increase of strain amplitude.The fractures exhibit distinctive stratification,characterized by the longitudinal cracks propagating radially.When the unloading strain is less than the loaded strain,the extent of the strain hysteresis effect amplifies with an increase in unloading strain.And the observed fracture characteristics are consistent with those under monotonic torsion.Differently,when the loading strain equals the unloading strain,a distinctive fracture pattern emerges in the Mo wire,characterized by a"peak"shape.This research provides valuable insights for optimizing the mechanical reliability of micron wires in microscale and nanoscale applications.展开更多
This study reports results for the morphology,crystal structure and critical parameters of Sm_(2)O_(3)-doped MgB_(2)wires with low and high initial filling densities.The transmission electron microscope(TEM)images wer...This study reports results for the morphology,crystal structure and critical parameters of Sm_(2)O_(3)-doped MgB_(2)wires with low and high initial filling densities.The transmission electron microscope(TEM)images were done for the longitudinal section of MgB_(2)wires.The results show that the Sm_(2)O_(3)admixture significantly changes the morphology of the MgB_(2)material,accelerates the formation of the MgB_(2)phase,does not form rectangular MgB_(2)crystallites,does not leave pure Mg,and forms Sm_(2)O_(3)areas of 10 nm and 20 nm.The effects of Sm_(2)O_(3)addition on MgB_(2)formation in superconducting wires were revealed in detail in this study.Additionally,Sm_(2)O_(3)causes the formation of point pinning regions that significantly increase the critical transport current density at the temperature range from 15 K to 30 K.The TEM images point out that rectangular MgB_(2)crystallites are formed in undoped Mg B_(2)wires,which have not been previously reported XRPD results showed that short-term heating allowed obtaining a larger amount of MgB_(2)phase for the MgB_(2)wire with high initial filling density.On the other hand,long heating time and high initial density slow down the creation of MgB_(2)phase when the Mg is in the solid state.展开更多
SrTiO3 submicro-wires were prepared by the reaction of layered titanatc nanowircs with Sr(OH)2 powder in an autoclave. The wires were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM...SrTiO3 submicro-wires were prepared by the reaction of layered titanatc nanowircs with Sr(OH)2 powder in an autoclave. The wires were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), Ultra-violet visible (UV-vis), photoluminescence (PL) and Raman spectroscopy. The XRD measurement shows that the prepared SrTiO3 submicro-wircs hardly have impurity phases. The SEM and TEM images demonstrate that the scalable wires, which need to be processed at the reaction temperature of 180℃ for about 48 hours, are not composed of single crystals. The PL shows that the wire-like SrTiO3 has emission peaks at the wavelengths of 568 and 585 nm. Further, the Raman spectroscopy reveals structural changes in the products through different reaction time.展开更多
The heterostructure of InAs/In0.52Al0.48As/InP is unique in that InAs wires instead of dots self-assemble in molecular beam epitaxy. These InAs wires have some distinctive features in their growth and structure. This ...The heterostructure of InAs/In0.52Al0.48As/InP is unique in that InAs wires instead of dots self-assemble in molecular beam epitaxy. These InAs wires have some distinctive features in their growth and structure. This paper summarizes the investigations of the growth and structural properties of InAs wires that have been performed in our laboratory recently.展开更多
Coaxially dielectric samples consisting of different packing ratios of glass-covered Fe73.5Si13.5B9Nb3Cu1 amorphous wires embedded in a paraffin wax matrix were fabricated, and the influence of short-wire packing rati...Coaxially dielectric samples consisting of different packing ratios of glass-covered Fe73.5Si13.5B9Nb3Cu1 amorphous wires embedded in a paraffin wax matrix were fabricated, and the influence of short-wire packing ratio (3%-9% in mass fraction) and thickness (1-7 mm) on the microwave absorption properties was systematically investigated in microwave frequency range of 2-18 GHz. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and scalar network analyzer (SNA) were used for characterizing microstructure and evaluating microwave absorption properties. Experimental results show the significant frequency (6-18 GHz) dependence of the complex relative permeability and permittivity. The reflection loss (RL) with different thickness and short-wire packing ratio reveals that the composite sample containing 7% exhibits better microwave absorption behavior with its minimum value of RL reaching-34 dB in thickness of 3 mm at 14 GHz. Therefore, it is significantly useful to develop microwire-dielectric materials with much wider absorption band for microwave absorption applications.展开更多
Magnesium alloy wires were processed by micro-arc oxidation (MAO) in a modified silicate-phosphate composite electrolyte containing hydroxyapatite (HA) nanopowders and NaOH. Effects of NaOH content in the composit...Magnesium alloy wires were processed by micro-arc oxidation (MAO) in a modified silicate-phosphate composite electrolyte containing hydroxyapatite (HA) nanopowders and NaOH. Effects of NaOH content in the composite electrolyte on the microstructure and properties of the MAO ceramic coatings on magnesium alloy wires were studied. It is found that the arc voltage of magnesium alloy wires in the micro-arc oxidation process is significantly reduced while the oxidation rate is accelerated. Addition of 2 g/L NaOH in the composite electrolyte is a better choice for improving corrosion resistance of magnesium alloy wires. During early simulated body fluids (SBF) immersion, the micro-arc oxidized magnesium alloy wires undergo a slow and stable degradation. After soaking for 28 d, the protective ceramic coating still shows no damage but significant degradation is observed for magnesium alloy wires after immersion for more than 60 d.展开更多
In this study, we present a 2-step deposition method via sputtering and electroplating that uses carbon nanotube(CNT) wires synthesized from a wet-spinning technique to produce high-performance CNT/Au/Cu composite wir...In this study, we present a 2-step deposition method via sputtering and electroplating that uses carbon nanotube(CNT) wires synthesized from a wet-spinning technique to produce high-performance CNT/Au/Cu composite wires. After the Au sputtering pre-treatment, the deposition of Cu on the CNT wires was found to be much more homogeneous due to improved wettability and reactivity of the wire surface. At different electrodeposition time, the mechanical strength of the CNT/Au/Cu composite wires could be as high as 0.74 GPa(~2 times stronger than metal wires) while their electrical conductivity could reach 4.65 × 10~5 S/cm(~80% of that for copper). More importantly, the CNT/Au/Cu composite wires with high CNT volume fraction are expected to be lightweight(up to 42% lower than Cu mass density), suggesting that our high-performance composite wires are a promising candidate to substitute conventional heavy metal wires in the future applications.展开更多
The binding energy and the photon energy dependence of the photoionization cross-section are calculated for a hydrogenic impurity in GaAs/Ga 1-xAl xAs quantum well wires.The correlation between confined and non-co...The binding energy and the photon energy dependence of the photoionization cross-section are calculated for a hydrogenic impurity in GaAs/Ga 1-xAl xAs quantum well wires.The correlation between confined and non-confined direction of the wire in the variational wave function is taken into account.The results show that the photoionization cross-sections are affected by the width of the wire and that their magnitudes are larger than those in infinite potential quantum well wires.In comparison with previous's results,the variational wave function improves the binding energy and decreases the value of photoionization cross-sections of the hydrogenic impurities,which makes the results more reasonable.展开更多
A stranded wires helical spring is formed of a multilayer and coaxial strand of several wires twisted together with the same direction of spiral. Compared with the conventional single wire spring, the stranded wires h...A stranded wires helical spring is formed of a multilayer and coaxial strand of several wires twisted together with the same direction of spiral. Compared with the conventional single wire spring, the stranded wires helical spring has the notable predominance in strength, damping and vibration reduction, which is usually used in aircraft engines, automatic weapons, etc. However, due to its complicated structure, the precise computation of its strength and rigidity need be a correct mathematical model, which then will be imported to finite element analysis software for solutions. Equations on solving geometric parameters, such as external diameters of strands and screw pitches of wires, are put forward in the paper. It also proposes a novel methodology on solving geometric parameters and establishing entity models of the stranded wires helical spring, which provides foundation of computing mechanical parameters by FEA. Then mathematical models on the centre line of the strand and the surface curve of each wire, after closing two ends in a spring, are proposed. Finally, geometric parameters are solved in a case study, and a 3D entity model of a spring with 3 layers and 16 wires is established, which has validated the accuracy of the proposed methodology and the 3D entity mathematical model. The method provides a new way to design stranded wire helical spring.展开更多
基金the National Natural Science Foundation of China(22208320)the Science and Technology Program of Henan Province(212102210044)The Henan Association for Science and Technology Youth Talent Support Program(2022HYTP026).
文摘Combining the advantages of high efficiency,low-pressure drop,and large throughput,the pore arrayenhanced tube-in-tube microchannel(PA-TMC) is a promising microreactor for industrial applications.However,most of the mass transfer takes place in the upstream pore region,while the contribution of the downstream annulus is limited.In this work,helical wires were introduced into the annulus by adhering to the outer surface of the inner tube.Mixing behavior and mass transfer of liquid-liquid twophase flow in PA-TMC with different helical wires have been systematically studied by a combination of experiments and volume of fluid(VOF) method.The introduction of helical wires improves the overall volumetric mass transfer coefficient KLa by up to 133% and the mass transfer efficiency E by up to 117%.The simulation results show that the helical wire brings extra phase mixing regions and increases the specific interface area,while accelerating the fluid flow and expanding the area of enhanced turbulent dissipation rate.Influences of helical wires in various configurations are compared by the comprehensive index I concerning the pressure drop and mass transfer performance simultaneously and a new correlation between KLa and specific energy consumption φ is proposed.This research deepens the understanding of the mixing behavior and mass transfer in the PA-TMCs and provides practical experience for the process intensification of microchannel reactors.
基金Project sponsored by the Natural Science Foundation of Chongqing,China(Grant No.CSTB2024NSCQMSX0736)the Special Project of Chongqing Technology Innovation and Application Development(Major Project)(Grant No.CSTB2024TIAD-STX0035)the Research Foundation of Institute for Advanced Sciences of CQUPT(Grant No.E011A2022328)。
文摘We theoretically investigate the electronic structure of cylindrical magnetic topological insulator quantum wires in MnBi_(2)Te_(4).Our study reveals the emergence of topological surface states in the ferromagnetic phase,characterized by spin-polarized subbands resulting from intrinsic magnetization.In the antiferromagnetic phase,we identify the coexistence of three distinct types of topological states,encompassing both surface states and central states.
基金supported by the National Natural Science Foundation of China(No.22422402)National Key Research and Development Program of China(No.2022YFF0705300)Key Research and Development Program of Jiangxi Province(No.20232BBG70004)。
文摘The performance and price of copper-based micro linear products are determined by the diameter uniformity.How to accurately detect the wire diameter of long-length copper based micro linear products without cutting or damage has always been a technical concern for production enterprises.Herein,a novel approach was developed for nondestructive detection of the average diameter at any given segment of a long copper wire by assessing the adsorption capacity of arginine on its surface.The amount of adsorbent on the surface of the copper wire exhibits a positive correlation with the area,which can be detected by extractive electrospray ionization mass spectrometry(EESI-MS)after online elution with ammonia.The experimental results demonstrated that the analysis can be completed within 15 min,with a good linear relationship between copper wires with different diameters and the adsorption capacity of arginine.The linear correlation coefficient R2was 0.995,the relative standard deviation was 1.10%-2.81%,and the detection limit reached 2.5μm(length of segment=4 cm),showing potential applications for facile measurement of the average diameter of various metal wires.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12074101 and 11604081)sponsored by the Natural Science Foundation of Henan Province, China (Grant No. 212300410040)。
文摘The topological states of the two-leg and three-leg ladders formed by two trivial quantum wires with different lattice constants are theoretically investigated. Firstly, we take two trivial quantum wires with a lattice constant ratio of 1:2 as an example. For the symmetric nearest-neighbor intra-chain hopping two-leg ladder, the inversion symmetry protected topological insulator phase with two degenerate topological edge states appears. When the inversion symmetry is broken, the topological insulators with one or two topological edge states of different energies and topological metals with edge states embedded in the bulk states could emerge depending on the filling factor. The topological origin of these topological states in the two-leg ladders is the topological properties of the Chern insulators and Chern metals. According to the arrangement of two trivial quantum wires, we construct two types of three-leg ladders. Each type of the three-leg ladder could be divided into one trivial subspace and one topological nontrivial subspace by unitary transformation. The topological nontrivial subspace corresponds to the effective two-leg ladder model. As the filling factor changes, the system could be in topological insulators or topological metals phases. When the two-leg ladder is constructed by two trivial quantum wires with a lattice constant ratio of 1:3 and 2:3, the system could also realize rich topological states such as the topological insulators and topological metals with the topological edge states. These rich topological states in the two-leg and three-leg ladders could be confirmed by current experimental techniques.
基金funded by National Natural Science Foundation of China(52201084 and 52231003)Major Program(JD)of Hubei Province(2023BAA019)+2 种基金China Scholarship Council(CSC)Postdoctoral Station of metallurgical Engineering of Wuhan University of Science and Technology(WUST)Postdoctoral workstation of Zhejiang Jincheng New Material Co.,Ltd.
文摘304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observation techniques,the volume fraction of martensite,modes of grain deformation in distinct regions,and the phase relationship between austenite and martensite were comprehensively characterized.In addition,a finite element simulation with representative volume elements specific to different zones also offers insights into strain responses during the drawing process.Results from the first-pass drawing reveal that there exists a higher volume fraction of martensite in the central region of 304H austenitic stainless steel wire compared to edge areas.This discrepancy is attributed to a concentrated presence of shear slip system{111}<110>γcrystallographic orientation,primarily accumulating in the central region obeying the Kurdjumov-Sachs path.Subsequent to the second drawing pass,the cumulative shear deformation within distinct regions of the steel wire became more pronounced.This resulted in a progressive augmentation of the volume fraction of martensite in both the central and peripheral regions of the steel wire.Concurrently,this led to a discernible elevation in the overall residual magnetism of the steel wire.
文摘Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This imposes a reevaluation of the drawing procedure for constructing field curves with a constant field values around multiple parallel electrical conducting wires. To achieve this, we employ methods akin to those used for creating contours on topographical maps, ensuring a consistent numerical field value along the entire length of the field curves. Subsequent calculations will be conducted for scenarios where wires are not parallel.
基金support from the Australian Research Council(ARC)Linkage Project(LP200200689).
文摘The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niobium-titanium superconductors.The potential of replacing the Nb barrier with a low-cost iron(Fe)barrier for multifilament MgB2 superconducting wires is investigated in this manuscript.Therefore,MgB2 wires with Fe barrier sintered with different temperatures are studied(from 650°C to 900°C for 1 h)to investigate the non-superconducting reaction phase of Fe-B.Their superconducting performance including engineering critical current density(Je)and n-value are tested at 4.2 K in various external magnetic fields.The best sample sintered at 650°C for 1 h has achieved a Je value of 3.64×10^(4) A cm^(−2) and an n-value of 61 in 2 T magnetic field due to the reduced formation of Fe2B,better grain connectivity and homogenous microstructure.For microstructural analysis,the focused ion beam(FIB)is utilised for the first time to acquire three-dimensional microstructures and elemental mappings of the interface between the Fe barrier and MgB2 core of different wires.The results have shown that if the sintering temperature can be controlled properly,the Je and n-value of the wire are still acceptable for magnet applications.The formation of Fe2B is identified along the edge of MgB2,as the temperature increases,the content of Fe2B also increases which causes the degradation in the performance of wires.
文摘This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel.
基金the project Ferr Mion of the Ministry of Education,Youth and Sports,Czech Republic,co-funded by the European Union(CZ.02.01.01/00/22_008/0004591)the support of The Charles University Grant Agency in the frame of the project No.121724 and the project Cooperatio No.207030 Dental Medicine/LF1 of the Charles University+4 种基金financial support from the Ministry of Education,Youth and Sport of the Czech Republic under the grant No.RVO 14000supported by the Ministry of Health of the Czech Republic-RVO project VFN64165the support of the project GAMA 2 of the Technology Agency of the Czech Republic No.TP01010055the project of the Czech Academy of Sciences,Czech Republic(Praemium Academiae grant No.AP2202)the support of the Ministry of Health of the Czech Republic,grant project No.NU20-08-00150。
文摘Magnesium is an excellent material in terms of biocompatibility and its corrosion products can serve as an active source for new bone formation.However,localized corrosion and H_(2)generation limit the potential of Mg-based implants.Utilizing low-alloyed Mg-Zn wires can strongly reduce problems with large H_(2)bubbles and improve the mechanical properties considerably while maintaining excellent long-term biocompatibility.Acidic pickling and a polymer coating can be effectively used to lower the rate of in vivo degradation.In this work,microstructural,mechanical,and in vitro characterization of 250μm and 300μm extruded wires made from ultra-pure Mg,commercially pure Mg,Mg-0.15Zn,Mg-0.4Zn and Mg-1Zn was performed.Additionally,Mg-0.4Zn wires together with a variant coated with a copolymer of L-lactide andε-caprolactone were tested in vivo on artificially damaged Wistar rat femurs.Based on the observed Mg-induced osteogenesis,polymer-coated Mg wires with a small addition of Zn are a perspective material for bone-support applications,such as cerclage and fixation wires.
基金Project(51222405)supported by the National Natural Science Foundation for Outstanding Young Scholars of ChinaProject(51034002)supported by the National Natural Science Foundation of ChinaProject(120502001)supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.
基金Projects(50771076,50901055)supported by the National Natural Science Foundation of ChinaProject(07JK274)supported by the Education Department Foundation of Shaanxi Province,China
文摘The texture evolution of cold drawing copper wires produced by continuous casting was measured by X-ray diffractometry and electron back-scatter diffractometry,and was simulated using Taylor model.The results show that in the drawn poly-crystal copper wires produced by traditional continuous casting,111 and 100 duplex fiber texture forms,and with increasing strain,the intensities of 111 and 100 increase.In the drawn single-crystal copper wires produced by Ohno continuous casting,100 rotates to 111,and there is inhomogeneous distribution of fiber texture along radial direction of the wires,which is caused by the distribution of shear deformation.Compared with 100,111 fiber texture is more stable in the drawn copper wires.Comparison of the experimental results with the simulated results shows that the simulation by Taylor model can analyze the texture evolution of drawn copper wires.
基金financially supported by the National Natural Science Foundation of China(Grant No.12072241).
文摘Micron-scale molybdenum(Mo)wires are vital in numerous technological applications,including micro-electromechanical systems and nanodevices.Understanding their mechanical behavior under cyclic torsion loading is critical in designing reliable and durable components.This work investigates the mechanical behavior and fracture characteristics of micron Mo wires under various torsional loading conditions,including monotonic,symmetric,and asymmetric cyclic torsion.The results reveal that the fractures observed in Mo wires exhibit a relatively planar characteristic with noticeable clockwise river-patterned cleavage steps under monotonic torsion,mirroring the direction of the torsional stress applied during the experiment.In terms of symmetric cyclic torsion,it is notable that cyclic softening becomes increasingly pronounced as the increase of strain amplitude.The fractures exhibit distinctive stratification,characterized by the longitudinal cracks propagating radially.When the unloading strain is less than the loaded strain,the extent of the strain hysteresis effect amplifies with an increase in unloading strain.And the observed fracture characteristics are consistent with those under monotonic torsion.Differently,when the loading strain equals the unloading strain,a distinctive fracture pattern emerges in the Mo wire,characterized by a"peak"shape.This research provides valuable insights for optimizing the mechanical reliability of micron wires in microscale and nanoscale applications.
基金funded by the National Science Center-Miniatura 7-no.2023/07/X/ST5/00335 and the Scientific and Technological Research Council of Turkey(TUBITAK)(Grant number:219M270)。
文摘This study reports results for the morphology,crystal structure and critical parameters of Sm_(2)O_(3)-doped MgB_(2)wires with low and high initial filling densities.The transmission electron microscope(TEM)images were done for the longitudinal section of MgB_(2)wires.The results show that the Sm_(2)O_(3)admixture significantly changes the morphology of the MgB_(2)material,accelerates the formation of the MgB_(2)phase,does not form rectangular MgB_(2)crystallites,does not leave pure Mg,and forms Sm_(2)O_(3)areas of 10 nm and 20 nm.The effects of Sm_(2)O_(3)addition on MgB_(2)formation in superconducting wires were revealed in detail in this study.Additionally,Sm_(2)O_(3)causes the formation of point pinning regions that significantly increase the critical transport current density at the temperature range from 15 K to 30 K.The TEM images point out that rectangular MgB_(2)crystallites are formed in undoped Mg B_(2)wires,which have not been previously reported XRPD results showed that short-term heating allowed obtaining a larger amount of MgB_(2)phase for the MgB_(2)wire with high initial filling density.On the other hand,long heating time and high initial density slow down the creation of MgB_(2)phase when the Mg is in the solid state.
基金Scientific Research Foundation for the Returned Over-seas Scholar from the State Education Ministry, China
文摘SrTiO3 submicro-wires were prepared by the reaction of layered titanatc nanowircs with Sr(OH)2 powder in an autoclave. The wires were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), Ultra-violet visible (UV-vis), photoluminescence (PL) and Raman spectroscopy. The XRD measurement shows that the prepared SrTiO3 submicro-wircs hardly have impurity phases. The SEM and TEM images demonstrate that the scalable wires, which need to be processed at the reaction temperature of 180℃ for about 48 hours, are not composed of single crystals. The PL shows that the wire-like SrTiO3 has emission peaks at the wavelengths of 568 and 585 nm. Further, the Raman spectroscopy reveals structural changes in the products through different reaction time.
文摘The heterostructure of InAs/In0.52Al0.48As/InP is unique in that InAs wires instead of dots self-assemble in molecular beam epitaxy. These InAs wires have some distinctive features in their growth and structure. This paper summarizes the investigations of the growth and structural properties of InAs wires that have been performed in our laboratory recently.
基金Project(51371067)supported by the National Natural Science Foundation of China
文摘Coaxially dielectric samples consisting of different packing ratios of glass-covered Fe73.5Si13.5B9Nb3Cu1 amorphous wires embedded in a paraffin wax matrix were fabricated, and the influence of short-wire packing ratio (3%-9% in mass fraction) and thickness (1-7 mm) on the microwave absorption properties was systematically investigated in microwave frequency range of 2-18 GHz. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and scalar network analyzer (SNA) were used for characterizing microstructure and evaluating microwave absorption properties. Experimental results show the significant frequency (6-18 GHz) dependence of the complex relative permeability and permittivity. The reflection loss (RL) with different thickness and short-wire packing ratio reveals that the composite sample containing 7% exhibits better microwave absorption behavior with its minimum value of RL reaching-34 dB in thickness of 3 mm at 14 GHz. Therefore, it is significantly useful to develop microwire-dielectric materials with much wider absorption band for microwave absorption applications.
基金Project (BE2011778) supported by Science and Technology Support Program of Jiangsu Province,ChinaProjects (CityU 112510,112212) supported by Hong Kong Research Grants Council (RGC) General Research Funds (GRF) ,China
文摘Magnesium alloy wires were processed by micro-arc oxidation (MAO) in a modified silicate-phosphate composite electrolyte containing hydroxyapatite (HA) nanopowders and NaOH. Effects of NaOH content in the composite electrolyte on the microstructure and properties of the MAO ceramic coatings on magnesium alloy wires were studied. It is found that the arc voltage of magnesium alloy wires in the micro-arc oxidation process is significantly reduced while the oxidation rate is accelerated. Addition of 2 g/L NaOH in the composite electrolyte is a better choice for improving corrosion resistance of magnesium alloy wires. During early simulated body fluids (SBF) immersion, the micro-arc oxidized magnesium alloy wires undergo a slow and stable degradation. After soaking for 28 d, the protective ceramic coating still shows no damage but significant degradation is observed for magnesium alloy wires after immersion for more than 60 d.
基金supported financially by the Lloyd’s Register Foundation (No.R-265-000-553-597).
文摘In this study, we present a 2-step deposition method via sputtering and electroplating that uses carbon nanotube(CNT) wires synthesized from a wet-spinning technique to produce high-performance CNT/Au/Cu composite wires. After the Au sputtering pre-treatment, the deposition of Cu on the CNT wires was found to be much more homogeneous due to improved wettability and reactivity of the wire surface. At different electrodeposition time, the mechanical strength of the CNT/Au/Cu composite wires could be as high as 0.74 GPa(~2 times stronger than metal wires) while their electrical conductivity could reach 4.65 × 10~5 S/cm(~80% of that for copper). More importantly, the CNT/Au/Cu composite wires with high CNT volume fraction are expected to be lightweight(up to 42% lower than Cu mass density), suggesting that our high-performance composite wires are a promising candidate to substitute conventional heavy metal wires in the future applications.
文摘The binding energy and the photon energy dependence of the photoionization cross-section are calculated for a hydrogenic impurity in GaAs/Ga 1-xAl xAs quantum well wires.The correlation between confined and non-confined direction of the wire in the variational wave function is taken into account.The results show that the photoionization cross-sections are affected by the width of the wire and that their magnitudes are larger than those in infinite potential quantum well wires.In comparison with previous's results,the variational wave function improves the binding energy and decreases the value of photoionization cross-sections of the hydrogenic impurities,which makes the results more reasonable.
基金supported by National Natural Science Foundation for Distinguished Young Scholar of China (Grant No. 50925518)National Natural Science Foundation of China (Grant No. 50775226)+1 种基金Key Project of Ministry of Education of China(Grant No. 109129)Chongqing Municipal Key Scientific and Technological Project of China (Grant No. CSTC2009AC3049)
文摘A stranded wires helical spring is formed of a multilayer and coaxial strand of several wires twisted together with the same direction of spiral. Compared with the conventional single wire spring, the stranded wires helical spring has the notable predominance in strength, damping and vibration reduction, which is usually used in aircraft engines, automatic weapons, etc. However, due to its complicated structure, the precise computation of its strength and rigidity need be a correct mathematical model, which then will be imported to finite element analysis software for solutions. Equations on solving geometric parameters, such as external diameters of strands and screw pitches of wires, are put forward in the paper. It also proposes a novel methodology on solving geometric parameters and establishing entity models of the stranded wires helical spring, which provides foundation of computing mechanical parameters by FEA. Then mathematical models on the centre line of the strand and the surface curve of each wire, after closing two ends in a spring, are proposed. Finally, geometric parameters are solved in a case study, and a 3D entity model of a spring with 3 layers and 16 wires is established, which has validated the accuracy of the proposed methodology and the 3D entity mathematical model. The method provides a new way to design stranded wire helical spring.