期刊文献+
共找到740篇文章
< 1 2 37 >
每页显示 20 50 100
使用Digital Wings扫描体的无牙颌种植口内扫描印模与传统印模的精确性比较
1
作者 黄婧 陆沁怡 +1 位作者 徐鹏 梁源 《口腔医学研究》 北大核心 2025年第10期890-895,共6页
目的:探究Digital Wings新型扫描体对无牙颌种植口内扫描印模技术精度的影响,分析其在数字化口内扫描组中的表现,以及与传统印模技术的精度的差异,为临床应用提供参考。方法:使用最佳拟合法和绝对线性偏差法得到传统取模组、口内扫描组... 目的:探究Digital Wings新型扫描体对无牙颌种植口内扫描印模技术精度的影响,分析其在数字化口内扫描组中的表现,以及与传统印模技术的精度的差异,为临床应用提供参考。方法:使用最佳拟合法和绝对线性偏差法得到传统取模组、口内扫描组和标准模型组的种植体位置的准确性和精度有效值(root mean square,RMS)。结果:传统组、普通扫描体组、新型CAD扫描体组和Digital Wings扫描体组准确性的均方根RMS中位数(四分位间距)分别为39.3(29.9~50.5)μm、135.1(50.8~260.5)μm、84.3(53.2~212.5)μm、81.3(33.8~133.2)μm。Digital Wings扫描体组和传统取模组比较无显著性差异(P>0.05)。精度的RMS均数分别为35.3(12.4~98.5)μm、155.4(33.2~329.9)μm、116.4(4.4~349.8)μm、54.0(13.4~124.6)μm。Digital Wings扫描体组和新型CAD扫描体组与传统取模组比较无显著差异(P>0.05)。结论:Digital Wings扫描体组的精度和传统组的精度比较无显著差异。扫描体的改进,如扫描体外形的改变使扫描体的精度逐渐增加。更多关于无牙颌种植扫描体体外研究和临床研究需要开展。 展开更多
关键词 精度 准确性 Digital wings 扫描体 无牙颌
暂未订购
Novel hybrid aeroelastic control scheme for flexible wings using internal moving mass
2
作者 Zongyu ZHANG Xiaoming WANG +1 位作者 Xinhan HU Wenya ZHOU 《Chinese Journal of Aeronautics》 2025年第7期262-272,共11页
Aeroelastic control is a critical technique for high-aspect-ratio flexible wings.A novel aeroelastic control method is introduced,utilizing the internal Moving Mass Control(MMC)technique,which demonstrates the potenti... Aeroelastic control is a critical technique for high-aspect-ratio flexible wings.A novel aeroelastic control method is introduced,utilizing the internal Moving Mass Control(MMC)technique,which demonstrates the potential to fulfill hybrid control demands without incurring a drag penalty.Dynamic equations for a flexible wing equipped with a spanwise moving mass under unsteady aerodynamic loading are derived using mass position as the input variable.Controloriented analyses indicate that intrinsic structural frequencies,flutter characteristics,and gust response can be actively modified by varying the spanwise and chordwise positions of the mass element.Among these,the chordwise position exerts a more significant impact on the structural modes and flutter speed of the wing.A hybrid aeroelastic control system,incorporating motion planning and control law,is proposed to evaluate real-time performance in Active Flutter Suppression(AFS)and Gust Load Alleviation(GLA).Control outcomes suggest that,with a mass ratio of 1/16 and a half-chord installation area for the guide rail,flutter speed increases by about 10%.Additionally,excitation amplitudes across different gust frequencies are substantially mitigated,achieving a maximum reduction of vibration amplitude by about 73%.These findings offer a comprehensive understanding of the MMC technique and its application to flexible aircraft. 展开更多
关键词 Aeroelastic control Flexible wings Flutter suppression Gust load alleviation Moving mass
原文传递
Wings Flex设备纺全消光涤纶FDY的工艺探讨
3
作者 李明 徐兴国 +3 位作者 沈虹 胡兴其 赵成曙 崔利 《合成纤维》 2025年第5期18-22,共5页
采用熔体直纺装置和欧瑞康最新Wings Flex FDY设备,研究了83 dtex/72 f全消光涤纶全拉伸丝的生产工艺。通过对喷丝孔设计、冷却吹风条件、上油条件、拉伸卷绕工艺等进行调整与优化,确定了最佳生产工艺:喷丝板微孔叶长为0.56 mm,微孔叶宽... 采用熔体直纺装置和欧瑞康最新Wings Flex FDY设备,研究了83 dtex/72 f全消光涤纶全拉伸丝的生产工艺。通过对喷丝孔设计、冷却吹风条件、上油条件、拉伸卷绕工艺等进行调整与优化,确定了最佳生产工艺:喷丝板微孔叶长为0.56 mm,微孔叶宽为0.08 mm,凸形叶宽为0.12 mm,孔深为0.4 mm;环吹风压为25 Pa,无风区高度为50 mm;牵伸前后双上油工艺;牵伸辊温度为92℃,定形辊温度为133℃,牵伸比为1.88。在此工艺下生产较为稳定,产品性能指标优良。 展开更多
关键词 涤纶全拉伸丝 wings Flex FDY设备 全消光 生产工艺
原文传递
Study on Bionic Fabrication and Morphology of the Two Wings of the Tiger Papilio
4
作者 Fuming He Yaxuan Wang +1 位作者 Zhenyu Xiong Yang Li 《Journal of Electronic Research and Application》 2025年第1期247-253,共7页
Based on research into bionic butterflies for environmental detection and ecological management,a scheme was proposed to develop and manufacture a bionic aircraft with two wings inspired by specific butterfly species.... Based on research into bionic butterflies for environmental detection and ecological management,a scheme was proposed to develop and manufacture a bionic aircraft with two wings inspired by specific butterfly species.A flapping-wing aircraft with a simple structure was designed,and its two-wing design was optimized.The research focused on several key areas:the design and optimization of the wings,the development of the transmission mechanism,hardware design and fabrication,and 3D printing for component manufacturing.This resulted in the bionic replication of the wing shape and structure of the Tiger Papilio butterfly.The final bionic butterfly features a wingspan of 29.5 cm and a total weight of 13.8 g.This project integrates mechatronic principles and provides a valuable reference for advancements in the field of bionic butterflies.Future research could explore the aerodynamic characteristics of wings and innovative design approaches in greater depth. 展开更多
关键词 Bionic butterfly flying vehicle Two wing design Bionic design
在线阅读 下载PDF
Attenuation of boundary-layer instabilities for natural laminar flow design on supersonic highly swept wings 被引量:1
5
作者 Han NIE Wenping SONG +1 位作者 Zhonghua HAN Kefeng ZHENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期118-137,共20页
To meet the challenge of drag reduction for next-generation supersonic transport aircraft,increasing attention has been focused on Natural Laminar Flow(NLF)technology.However,the highly swept wings and high-Reynolds-n... To meet the challenge of drag reduction for next-generation supersonic transport aircraft,increasing attention has been focused on Natural Laminar Flow(NLF)technology.However,the highly swept wings and high-Reynolds-number conditions of such aircraft dramatically amplify Crossflow(CF)instabilities inside boundary layers,making it difficult to maintain a large laminar flow region.To explore novel NLF designs on supersonic wings,this article investigates the mechanisms underlying the attenuation of Tollmien-Schlichting(TS)and CF instabilities by modifying pressure distributions.The evolution of TS and CF instabilities are evaluated under typical pressure distributions with different leading-edge flow acceleration region lengths,pressure coefficient slopes and pressure coefficient deviations.The results show that shortening the leading-edge flow acceleration region and using a flat pressure distribution are favorable for suppressing CF instabilities,and keeping a balance of disturbance growth between positive and negative wave angles is favorable for attenuating TS instabilities.Based on the uncovered mechanisms,a strategy of supersonic NLF design is proposed.Examination of the proposed strategy at a 60°sweep angle and Ma=2 presents potential to exceed the conventional NLF limit and achieve a transition Reynolds number of 17.6million,which can provide guidance for NLF design on supersonic highly swept wings. 展开更多
关键词 Supersonic transport aircraft Natural laminar flow design Supersonic flow Highly-swept wings Transition delay Linear stability theory
原文传递
Aerodynamic Performance of Three Flapping Wings with Unequal Spacing in Tandem Formation
6
作者 Min Chang Ziyi Xu +2 位作者 Zengshuang Chen Li Li Xueguang Meng 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1662-1676,共15页
To better understand the aerodynamic reasons for highly organized movements of flying organisms,the three-flapping wing system in tandem formation was studied numerically in this paper.Different from previous relevant... To better understand the aerodynamic reasons for highly organized movements of flying organisms,the three-flapping wing system in tandem formation was studied numerically in this paper.Different from previous relevant studies on the multiple flapping wings that are equally spaced,this study emphasizes the impact of unequal spacing between individuals on the aerodynamics of each individual wing as well as the whole system.It is found that swapping the distance between the first and second wing with the distance between the second wing and the rearmost wing does not affect the overall aerodynamic performance,but significantly changes the distribution of aerodynamic benefits across each wing.During the whole flapping cycle,three effects are at play.The narrow channel effect and the downwash effect can promote and weaken the wing lift,respectively,while the wake capture effect can boost the thrust.It also shows that these effects could be manipulated by changing the spacing between adjacent wings.These findings provide a novel way for flow control in tandem formation flight and are also inspiring for designing the formation flight of bionic aircraft. 展开更多
关键词 Three flapping wings Unequal spacing Aerodynamic performance Tandem formation
在线阅读 下载PDF
Genetic Algorithm Optimization Design of Gradient Conformal Chiral Metamaterials and 3D Printing Verifiction for Morphing Wings
7
作者 Qian Zheng Weijun Zhu +3 位作者 Quan Zhi Henglun Sun Dongsheng Li Xilun Ding 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期346-364,共19页
This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of c... This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of chiral cell nodal circles while improving load transmission efficiency and enhancing manufacturing precision for 3D printing applications.A parametric design framework,integrating finite element analysis and optimization modules,is developed to enhance the wing’s multidirectional stiffness.The optimization process demonstrates that the distribution of chiral structural ligaments and nodal circles significantly affects wing deformation.The stiffness gradient optimization results reveal a variation of over 78%in tail stiffness performance between the best and worst parameter combinations.Experimental outcomes suggest that this strategy can develop metamaterials with enhanced deformability,offering a promising approach for designing morphing wings. 展开更多
关键词 Morphing wings Chiral metamaterials Gradient conformal design Genetic algorithm optimization 3D printing
在线阅读 下载PDF
Wingsuit Flying
8
作者 颜丹(译) 《中学生英语》 2024年第22期21-21,共1页
Wingsuit Flying,alsocalled wingsuiting,is a variation of skydiving.In this sport,a person will fly in the air using a special jumpsuit called a wingsuit.This wingsuit comprises of two arm wings and a single leg wing w... Wingsuit Flying,alsocalled wingsuiting,is a variation of skydiving.In this sport,a person will fly in the air using a special jumpsuit called a wingsuit.This wingsuit comprises of two arm wings and a single leg wing which has inflatable nylon cells.The modern wingsuits were developed in the 1990's.They are sometimes referred to as birdman suits or flying squirrel suits. 展开更多
关键词 wings NYLON WING
在线阅读 下载PDF
A novel videogrammetry-based full-field dynamic deformation monitoring method for variable-sweep wings
9
作者 Liqiang Gao Yan Liu +5 位作者 Bin Jiang Zhendong Ge Haoyang Li Xiang Guo Tao Suo Qifeng Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期120-132,共13页
The measurement of wing dynamic deformation in morphing aircraft is crucial for achieving closed-loop control and evaluating structural safety.For variable-sweep wings with active large deformation,this paper proposes... The measurement of wing dynamic deformation in morphing aircraft is crucial for achieving closed-loop control and evaluating structural safety.For variable-sweep wings with active large deformation,this paper proposes a novel videogrammetric method for full-field dynamic deformation measurement.A stereo matching method based on epipolar geometry constraint and topological constraint is presented to find the corresponding targets between stereo images.In addition,a new method based on affine transformation combined with adjacent closest point matching is developed,aiming to achieve fast and automatic tracking of targets in time-series images with large deformation.A calculation model for dynamic deformation parameters is established to obtain the displacement,sweep variable angle,and span variation.To verify the proposed method,a dynamic deformation measurement experiment is conducted on a variable-sweep wing model.The results indicate that the actual accuracy of the proposed method is approximately 0.02%of the measured area(e.g.,0.32 mm in a 1.6 m scale).During one morphing course,the sweep variable angle,the span variation and the displacement increase gradually,and then decrease.The maximum sweep variable angle is 36.6°,and the span variation is up to 101.13 mm.The overall configuration of the wing surface is effectively reconstructed under different morphing states. 展开更多
关键词 Morphing aircraft Variable-sweep wing Videogrammetry Large dynamic deformation Target matching and tracking
原文传递
Design and Experimental Verification of a Roll Control Strategy for Large Wingspan Flapping-Wing Aerial Vehicle
10
作者 Rui Meng Bifeng Song +2 位作者 Jianlin Xuan Xiaojun Yang Dong Xue 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1644-1661,共18页
Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down,while relying on the tail control surfaces to manage attitude.However,these aircraft have certain li... Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down,while relying on the tail control surfaces to manage attitude.However,these aircraft have certain limitations,such as poor accuracy in attitude control and inadequate roll control capabilities.This paper presents a design for an active torsional mechanism at the wing's trailing edge,which enables differential variations in the pitch angle of the left and right wings during flapping.This simple mechanical form significantly enhances the aircraft's roll control capacity.The experimental verification of this mechanism was conducted in a wind tunnel using the RoboEagle flapping-wing aerial vehicle that we developed.The study investigated the effects of the control strategy on lift,thrust,and roll moment during flapping flight.Additionally,the impact of roll control on roll moment was examined under various wind speeds,flapping frequencies,angles of attack,and wing flexibility.Furthermore,several rolling maneuver flight tests were performed to evaluate the agility of RoboEagle,utilizing both the elevon control strategy and the new roll control strategy.The results demonstrated that the new roll control strategy effectively enhances the roll control capability,thereby improving the attitude control capabilities of the flapping-wing aircraft in complex wind field environments.This conclusion is supported by a comparison of the control time,maximum roll angle,average roll angular velocity,and other relevant parameters between the two control strategies under identical roll control input. 展开更多
关键词 Roll control BIO-INSPIRED Roll moment Flapping wing aerial vehicle
在线阅读 下载PDF
模糊WINGS视角下的ANP加权矩阵新构造方法 被引量:7
11
作者 孙永河 李春好 +1 位作者 谢晖 段万春 《计算机工程与应用》 CSCD 2014年第12期26-32,37,共8页
构造因素集加权矩阵是ANP系统未加权超矩阵到加权超矩阵转化的一个关键技术。然而从已有的三种构造方法看,两两比较法比较机理混乱,而等权矩阵假设构造法通常是无效的,并且基于DEMATEL(决策试行与评价实验室)的构造方法不仅存在忽视因... 构造因素集加权矩阵是ANP系统未加权超矩阵到加权超矩阵转化的一个关键技术。然而从已有的三种构造方法看,两两比较法比较机理混乱,而等权矩阵假设构造法通常是无效的,并且基于DEMATEL(决策试行与评价实验室)的构造方法不仅存在忽视因素集自身强度的内在不足,而且也难以反映专家在对因素集之间影响关系判断时存在的"不精确性"。为克服上述缺陷,提出一种模糊WINGS(加权影响情景下的非线性测度体系)视角下的ANP因素集加权矩阵新构造方法。该方法一方面给出改进后的模糊DELPHI决策程序,充分考虑了专家判断过程中的"不精确性"。另一方面,系统提出模糊WINGS的方法思路,在系统因素集影响关系判别时充分考虑了因素集的自我影响强度,使因素集直接影响矩阵的构造更为合理。实例对比验证结果表明,该方法是科学合理的,有着较强的实践应用可操作性。 展开更多
关键词 模糊加权影响情景下的非线性测度体系(wings) 网络分析法 超矩阵 加权矩阵
在线阅读 下载PDF
Motion Attitude and Aerodynamic Characteristics Research of Flapping Wings Driven by Micro Servoactuator
12
作者 Tianyou Mao Bosong Duan +1 位作者 Bihui Yin Chuangqiang Guo 《Journal of Bionic Engineering》 CSCD 2024年第6期2830-2846,共17页
Compared to the traditional flapping-wing structure with single motion mode,a micro servoactuator driven Flapping-Wing Air Vehicle(FWAV)breaks free from the limitations imposed by the motion parameters of the crank-co... Compared to the traditional flapping-wing structure with single motion mode,a micro servoactuator driven Flapping-Wing Air Vehicle(FWAV)breaks free from the limitations imposed by the motion parameters of the crank-connecting rod mechanism.It allows for simultaneous control of wings’position and velocity attitude through pulse width modulation,showcasing unrivaled controllability and promising extensive applications.However,this method of motion control also brings new challenges to the design of the wings’motion parameters.This study seeks to investigate the relationship between the motion parameters of micro servoactuator driven FWAV and its aerodynamic characteristics,then explore a servo control method that can optimize its thrust-producing performance.To achieve this,this paper involves the establishment of Amplitude Loss Model(ALM),Flapping Wing Dynamic Model(FWDM),and Power Load Model(PLM),followed by motion capture experiments,dynamic monitoring experiments,and power monitoring experiments.Experimental results show that the proposed modeling method,which fully considers the amplitude loss effect and advanced twisting effect in flapping-wing motion,can accurately calculate thrust,power,and power load,with prediction errors of less than 10%,5%and 13%,respectively.This high-precision model can effectively optimize motion parameters,allowing for better performance of flapping-wing motion. 展开更多
关键词 Flapping wing Micro servoactuator Motion attitude Aerodynamic model
在线阅读 下载PDF
Development of a Bio-inspired Tailless FWMAV with High-Frequency Flapping Wings Trajectory Tracking Control
13
作者 Qingcheng Guo Chaofeng Wu +4 位作者 Yichen Zhang Feng Cui Wu Liu Xiaosheng Wu Junguo Lu 《Journal of Bionic Engineering》 CSCD 2024年第5期2145-2166,共22页
The development of a tailless Flapping Wing Micro Aerial Vehicle(FWMAV)inspired by the hummingbird is presented in this work.By implementing mechanical simplifications,it is possible to use planar machining technology... The development of a tailless Flapping Wing Micro Aerial Vehicle(FWMAV)inspired by the hummingbird is presented in this work.By implementing mechanical simplifications,it is possible to use planar machining technology for manufacturing of the FWMAV’s body,greatly reducing assembly errors.Traditionally,studies on flapping wing aircraft are limited to open-loop wing kinematics control.In this work,an instantaneous closed-loop wing trajectory tracking control system is introduced to minimize wings’trajectory tracking errors.The control system is based on Field-Oriented Control(FOC)with a loop shaping compensation technique near the flapping frequency.Through frequency analysis,the loop shaping compensator ensures the satisfactory bandwidth and performance for the closed-loop flapping system.To implement the proposed controller,a compact autopilot board integrated with FOC hardware is designed,weighing only 2.5 g.By utilizing precise wing trajectory tracking control,the hummingbird-inspired FWMAV demonstrates superior ability to resist external disturbances and exhibits reduced attitude tracking errors during hovering flight compared to the open-loop wing motion. 展开更多
关键词 Flapping Wing Micro Aerial Vehicle(FWMAV) Bio-inspired robotics Trajectory control Loop shaping compensator Field-Oriented Control(FOC)
在线阅读 下载PDF
Study on the Vibration Reduction Characteristics of FWMAV Flexible Bionic Wings Mimicking the Hindwings of Trypoxylus dichotomus 被引量:2
14
作者 Yongwei Yan Fa Song +4 位作者 Nuo Xu Haochen Zhu Hongxu Xing Shujun Zhang Jiyu Sun 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2179-2193,共15页
Using the method of structural finite element topology optimization and analysis of the hindwings of Trypoxylus dichotomus,this work identified the main loading force transmission path and designed the initial structu... Using the method of structural finite element topology optimization and analysis of the hindwings of Trypoxylus dichotomus,this work identified the main loading force transmission path and designed the initial structure of a bionic flexible wing.A structural design scheme of the vibration damping unit was proposed,and the structural mechanics and modal vibration characteristics were simulated and analyzed.3D printing technology was used to manufacture the designed bionic wing skeleton,which was combined with two kinds of wing membrane materials.The Flapping Wing Micro-aerial Vehicle(FWMAV)transmission mechanism vibration characteristics were observed and analyzed by a high-speed digital camera.A triaxial force transducer was used to record the force vibration of the flexible bionic wing flapping in a wind tunnel.A wavelet processing method was used to process and analyze the force signal.The results showed that the force amplitude was more stable,the waveform roughness was the lowest,and the peak shaving phenomenon at the z-axis was the least obvious for the bionic flexible wing model that combined the topology-optimized bionic wing skeleton with a polyamide elastic membrane.This was determined to be the most suitable design scheme for the wings of FWMAVs. 展开更多
关键词 Vibration reduction characteristics Bionic wings Flapping-wing micro-aerial vehicle(FWMAV) Beetle hindwings
在线阅读 下载PDF
Wings Plus设备纺22 dtex/24 f细旦聚酯FDY工艺探讨 被引量:3
15
作者 徐兴国 陈向玲 +3 位作者 李国平 崔利 吉鹏 王华平 《合成纤维》 CAS 2020年第7期9-12,共4页
在熔体直纺装置上,采用Wings FDY Plus工艺,对22 dtex/24 f细旦聚酯全拉伸丝(FDY)的生产工艺进行了研究。通过对熔体输送温度、纺丝组件、喷丝板孔径、缓冷区、吹风冷却条件、上油条件、卷绕拉伸工艺等进行优化与控制,生产出性能优异的... 在熔体直纺装置上,采用Wings FDY Plus工艺,对22 dtex/24 f细旦聚酯全拉伸丝(FDY)的生产工艺进行了研究。通过对熔体输送温度、纺丝组件、喷丝板孔径、缓冷区、吹风冷却条件、上油条件、卷绕拉伸工艺等进行优化与控制,生产出性能优异的细旦FDY,纤维断裂强度≥4.68 cN/dtex、断裂强度CV值≤0.95%、条干不匀率≤0.63%,纤维染色效果好,无深浅丝、无条纹。 展开更多
关键词 聚酯FDY 细旦 wings PDF Plus工艺
原文传递
A Distributed Coordinated Control Scheme for Morphing Wings with Sampled Communication 被引量:5
16
作者 吴俊 陆宇平 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第3期364-369,共6页
To investigate the control of morphing wings by means of interacting effectors,this article proposes a distributed coordinated control scheme with sampled communication on the basis of a simple morphing wing model,est... To investigate the control of morphing wings by means of interacting effectors,this article proposes a distributed coordinated control scheme with sampled communication on the basis of a simple morphing wing model,established with arrayed agents. The control scheme can change the shape of airfoil into an expected one and keep it smooth during morphing. As the interconnection of communication network and the agents would make the behavior of the morphing wing system complicated,a diagrammatic stability analysis method is put forward to ensure the system stability. Two simulations are carried out on the morphing wing system by using MATLAB. The results stand witness to the feasibility of the distributed coordinated control scheme and the effectiveness of the diagrammatic stability analysis method. 展开更多
关键词 morphing wing multi agent systems distributed control coordinated control system stability
原文传递
Computational aerodynamics of low Reynolds number plunging,pitching and flexible wings for MAV applications 被引量:15
17
作者 W.Shyy Y.Lian +7 位作者 J.Tang H.Liu P.Trizila B.Stanford L.Bernal C.Cesnik P.Friedmann P.Ifju 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第4期351-373,共23页
Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regi... Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV's, inclu- ding massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle. 展开更多
关键词 Micro air vehicles AERODYNAMICS Flexible wings Low Reynolds number
暂未订购
Boundary-layer transition of advanced fighter wings at high-speed cruise conditions 被引量:5
18
作者 Yiming DU Zhenghong GAO +1 位作者 Chao WANG Qianhuan HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第4期799-814,共16页
The achievement of laminar flow in the boundary layer at high-speed cruise conditions may further, in addition to shock-wave control, reduce the drag and extend the range of military fighter aircraft. To this end, a f... The achievement of laminar flow in the boundary layer at high-speed cruise conditions may further, in addition to shock-wave control, reduce the drag and extend the range of military fighter aircraft. To this end, a further investigation on transitional boundary-layer flow of fighter wings is needed due to different configurations from the wings used on conventional transport aircraft. In this paper, wind tunnel experiments and numerical simulations were conducted on three-dimensional transition of thin diamond-shaped wings used on advanced fighter aircraft at tran/supersonic design points. A newly proposed correlation of crossflow transition which includes the effect of surface roughness was introduced into the c-Rehttransition model. Predicted results were in good agreement with flow visualizations. Results showed that the strength of the crossflow component grew rapidly around the leading edge because of the severe flow acceleration, just as the same as wings with a large aspect ratio. However, there seemed no regular pattern of instabilitydominance variation in span-wise for a diamond configuration. The dominance of different instability mechanisms strongly depended on the local pressure distribution. Hereby, the research recommended a ‘‘roof-like" shape of pressure distribution to suppress both crossflow and Tollmien-Schlichting(T-S) instabilities. Besides, a sharp suction peak with a serious pressure rise should be cut off to avoid stronger instabilities. Further discussions also revealed an independence of the unit Reynolds number when transition was triggered by T-S instabilities. Aerodynamic force comparisons indicated that further benefit on drag reduction could be expected by including the three-dimensional transition effect into a wing design process. 展开更多
关键词 Boundary layer TRANSITION FIGHTER AIRCRAFT design Supersonic AIRCRAFT wings TRANSONIC wing aerodynamics Wind tunnel measurements
原文传递
Review on ultra-lightweight flapping-wing nano air vehicles:Artificial muscles,flight control mechanism,and biomimetic wings 被引量:7
19
作者 Liang WANG Bifeng SONG +1 位作者 Zhongchao SUN Xiaojun YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期63-91,共29页
Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant r... Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant role,which provides the sources of inspiration for designing flapping-wing vehicles.In recent years,due to the development of micro-and meso-scale manufacturing technologies,advances in components technologies have directly led to a progress of smaller Flapping-Wing Nano Air Vehicles(FWNAVs)around gram and sub-gram scales,and these air vehicles have gradually acquired insect-like locomotive strategies and capabilities.This paper will present a selective review of components technologies for ultra-lightweight flapping-wing nano air vehicles under 3 g,which covers the novel propulsion methods such as artificial muscles,flight control mechanisms,and the design paradigms of the insect-inspired wings,with a special focus on the development of the driving technologies based on artificial muscles and the progress of the biomimetic wings.The challenges involved in constructing such small flapping-wing air vehicles and recommendations for several possible future directions in terms of component technology enhancements and overall vehicle performance are also discussed in this paper.This review will provide the essential guidelines and the insights for designing a flapping-wing nano air vehicle with higher performance. 展开更多
关键词 Actuators Artificial muscle Biomimetic wings Flapping wing Flight control mechanism Nano Air Vehicles(NAVs)
原文传递
Transfer learning from two-dimensional supercritical airfoils to three-dimensional transonic swept wings 被引量:5
20
作者 Runze LI Yufei ZHANG Haixin CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期96-110,共15页
Machine learning has been widely utilized in flow field modeling and aerodynamic optimization.However,most applications are limited to two-dimensional problems.The dimensionality and the cost per simulation of three-d... Machine learning has been widely utilized in flow field modeling and aerodynamic optimization.However,most applications are limited to two-dimensional problems.The dimensionality and the cost per simulation of three-dimensional problems are so high that it is often too expensive to prepare sufficient samples.Therefore,transfer learning has become a promising approach to reuse well-trained two-dimensional models and greatly reduce the need for samples for threedimensional problems.This paper proposes to reuse the baseline models trained on supercritical airfoils to predict finite-span swept supercritical wings,where the simple swept theory is embedded to improve the prediction accuracy.Two baseline models are investigated:one is commonly referred to as the forward problem of predicting the pressure coefficient distribution based on the geometry,and the other is the inverse problem that predicts the geometry based on the pressure coefficient distribution.Two transfer learning strategies are compared for both baseline models.The transferred models are then tested on complete wings.The results show that transfer learning requires only approximately 500 wing samples to achieve good prediction accuracy on different wing planforms and different free stream conditions.Compared to the two baseline models,the transferred models reduce the prediction error by 60%and 80%,respectively. 展开更多
关键词 Inverse design Pressure distribution Supercritical airfoils Swept wings Transfer learning
原文传递
上一页 1 2 37 下一页 到第
使用帮助 返回顶部