The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeogr...The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeographic studies(Wagner and Liebherr 1992;Peeters and Ito 2001;Helms 2018).展开更多
The rocket sled system is not only a high-speed dynamic ground test system,but also one of the future aerospace horizontal launch schemes.The winged load,as a common type of payload,has greater vibration and noise int...The rocket sled system is not only a high-speed dynamic ground test system,but also one of the future aerospace horizontal launch schemes.The winged load,as a common type of payload,has greater vibration and noise intensity than the wingless load.Due to the severe aerodynamic instability prior to separation,the head-up or head-down phenomena are more evident and the test accuracy significantly decreases.The high-precision computer fluid dynamics and aeroacoustic analysis are employed to explore the multifield coupling mechanism of a rocket sled with the winged payload in the wide speed range(Ma=0.5–2).The results show that as the incoming velocity increases,the cone angle of the shock wave of the rocket sled decreases,the shock pressure increases quickly,and the vortex between the slippers splits and gradually shrinks in size.The velocity of the rocket sled exerts little influence on the modal resonance frequency.The wing has a significant impact on aerodynamic noise,and as the sound pressure level rises,the propagation direction gradually shifts towards the rear and upper regions of the wing.展开更多
In December 2021, the Datong Archaeological Research Institute conducted an excavation of the Lv Xu’s tomb in Zhijiabao Village, Pingcheng District, Datong. The Lv Xu’s tomb is a newly excavated tomb of the Pingchen...In December 2021, the Datong Archaeological Research Institute conducted an excavation of the Lv Xu’s tomb in Zhijiabao Village, Pingcheng District, Datong. The Lv Xu’s tomb is a newly excavated tomb of the Pingcheng period of Northern Wei Dynasty, which contains a rare painted shallow relief stone coffin. On the northern side of the coffin, there is a picture of ascending owner flanked by an ox-headed bird with wings and a mouse-headed bird with wings on each side. There are also images of azure dragon, white tiger and vermilion bird in the lower part of the east, west and north walls respectively. The identity information and the roles these images played in the tomb are not to be clarified yet. This paper aims to use iconographic methods to interpret the painted shallow relief carvings of winged divine beasts on the stone coffin, to identify their characteristics, schematic sources, and cultural attributes, and to provide some foundational work for further research on the stone coffin of the Lv Xu’s tomb.展开更多
In this paper,we present the development of our latest flapping-wing micro air vehicle(FW-MAV),named Explobird,which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g,enabling it to accomplish vert...In this paper,we present the development of our latest flapping-wing micro air vehicle(FW-MAV),named Explobird,which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g,enabling it to accomplish vertical take-off and hover flight.We devised a novel gear-based mechanism for the flapping system to achieve high lift capability and reliability and conducted extensive testing and analysis on the wings to optimise power matching and lift performance.The Explobird can deliver a peak lift-to-weight ratio of 1.472 and an endurance time of 259 s during hover flight powered by a single-cell LiPo battery.Considering the inherent instability of the prototype,we discuss the derivatives of its longitudinal system,underscoring the importance of feedback control,position of the centre of gravity,and increased damping.To demonstrate the effect of damping enhancement on stability,we also designed a passive stable FW-MAV.Currently,the vehicle is actively stabilised in roll by adjusting the wing root bars and in pitch through high-authority tail control,whereas yaw is passively stabilised.Through a series of flight tests,we successfully demonstrate that our prototype can perform vertical take-off and hover flight under wireless conditions.These promising results position the Explobird as a robust vehicle with high lift capability,paving the way towards the use of FW-MAVs for carrying load equipment in multiple tasks.展开更多
Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics mo...Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.展开更多
A total of 16 specimens of fossil-winged fruits were found from the Middle Miocene marine deposits, Duho Formation, Pohang Basin, Korea. They were identified into two structurally different groups: 15 specimens into ...A total of 16 specimens of fossil-winged fruits were found from the Middle Miocene marine deposits, Duho Formation, Pohang Basin, Korea. They were identified into two structurally different groups: 15 specimens into a winged fruit of Fraxinus, and one specimen of Liriodendron. The most samaras (13 specimens) were identified as Fraxinus oishii, which is characterized by narrowly ovate or ovate-elliptic shapes that are 2.7-3.6 cm in length and 0.7-1 cm in width (i/w ratio=3.4-4). The apexes of the Fraxinus oishii samara are round or slightly emarginated, and a seed of the samara is always located at the base, of which the general shape is narrow rhombic-ellipsoidal. The seed is 1.2-2 cm long and 0.5-0.7 cm wide. Two specimens are different from the samara of Fraxinus oishii. They have a 6.6 length/width ratio (3.3 cm long and 0.5 cm wide), and thus, are temporarily classified into the Fraxinus sp. One specimen was recognized as a winged seed of Liriodendron meisenense. The wing is broadly lanceolate to elliptic in shape, has a smooth, acute apex, and is approximately 3 cm long and 0.7 cm wide. Samaras of Fraxinus oishii and Liriodendron meisenense were early reported from the Middle Miocene deposits from North Korea, but these specimens are the first discovery in South Korea. Further study of the Duho Formation may connect flora relationships between North and South Korea.展开更多
Winged bean[Psophocarpus tetragonolobus(L.)DC.]is a vegetable legume crop.The center of origin,diversity and domestication of this crop are not known.In this study,we assessed the genetic diversity and population stru...Winged bean[Psophocarpus tetragonolobus(L.)DC.]is a vegetable legume crop.The center of origin,diversity and domestication of this crop are not known.In this study,we assessed the genetic diversity and population structure of 457 accessions of winged bean collected from six geographical regions(North,Northeast,East,West,and central,and South)in Thailand using 14 simple sequence repeat(SSR)markers.In total,the SSR markers detected only 55 alleles with an average of 3.9 alleles per locus.Observed heterozygosity was relatively high(0.15)and overall gene diversity was moderate(0.487).Gene diversity,allelic richness and observed heterozygosity in the six regions were comparable,while the estimated out-crossing rate was relatively high(16.4%).STRUCTURE analysis grouped the 457 winged bean accessions into three subpopulations.Neighbor-joining(NJ)analysis grouped all the accessions into two major clusters.Genetic groups identified by both STRUCTURE analysis and NJ analysis were unrelated to geographical origins.Principal coordinate analysis revealed no clear clustering of the winged bean accessions.Although genetic groups were not unrelated to geographical origins,most of the winged bean accessions with long pods(30 cm or higher in length)or having purple seed coats or purple young pods were grouped together.This suggested that the winged beans with long pods or with purple seed or purple young pods may have a single origin.Altogether,these results demonstrated that the genetic diversity of winged bean in Thailand was moderate with high genetic admixture.We argue that the high genetic admixture of the winged bean in Thailand is due to seed migration and relatively high outcrossing rate.展开更多
Brandisia hancei(Paulowniaceae)is a widely distributed shrub in karst regions in southwestern China.Its seeds have a membranous wing,and they mature just before the rainy season begins.To assess the effect of the wing...Brandisia hancei(Paulowniaceae)is a widely distributed shrub in karst regions in southwestern China.Its seeds have a membranous wing,and they mature just before the rainy season begins.To assess the effect of the wing on seed dispersal and germination of B.hancei,we measured the dispersal distance at varying wind speeds and release heights,falling duration from different release heights,floating duration on still water,rates of imbibition of water,and drying and soil adherence to seeds.Germination experiments were conducted on intact and de-winged seeds immediately after harvest.The wing increased the falling duration in still air and the floating ability on water.Dispersal distance of winged and de-winged seeds did not differ at a wind speed of 2.8 m s1,but at 3.6 and 4.0 m s1 dispersal distances were greater for de-winged than for winged seeds.Seed wing had little effect of absorption and retention of water,but significantly increased soil adherence to the seeds.Mature seeds were non-dormant and germinated to over 90%with a mean germination time of about 10 days.By combining the environmental conditions in karst habitat with the seed traits of B.hancei,we conclude that dispersal and germination of winged seeds are adapted to the precipitation seasonality in heterogeneous habitats absence of soil.展开更多
We analyze morphometrics from a sample of 276 White-winged Black Tern(Chlidonias leucopterus) caught in north-west Australia on 4 March 2011. An estimated 40000 terns were present — the largest concentration of this ...We analyze morphometrics from a sample of 276 White-winged Black Tern(Chlidonias leucopterus) caught in north-west Australia on 4 March 2011. An estimated 40000 terns were present — the largest concentration of this species yet reported from Australia. When comparing juveniles with adults, only wing length and body mass differed significantly; however, juveniles were still easily recognized by plumage and wing molt as late as March. There was little evidence of any dramatic weight gain in adults before their northward migration. No morphological characteristic distinguishing sex was found. We confirmed that terns caught in this study did not appear to differ morphologically from those of the western palearctic populations. We describe wing molt based on data from 354 individuals captured and banded in Australia over 28 years. Wing molt proceeds in much the same way as found in other small terns.展开更多
Ethnic people living on the Tibetan Plateau during the Tubo period have been well-known as not only strong and brave on horses,but they were also an ethnic group enriched with powerful creativity and rich imagination....Ethnic people living on the Tibetan Plateau during the Tubo period have been well-known as not only strong and brave on horses,but they were also an ethnic group enriched with powerful creativity and rich imagination.From Tubo’s cultural art,we can observe a large amount of extremely fine artifacts.For instance,among展开更多
[Objectives]To explore the effect of selenium(Se)on inhibiting embryo abortion and enhancing seedling cultivation quality of Red sandalwood(Pterocarpus santalinus).[Methods]Based on prior cultivation practices and exp...[Objectives]To explore the effect of selenium(Se)on inhibiting embryo abortion and enhancing seedling cultivation quality of Red sandalwood(Pterocarpus santalinus).[Methods]Based on prior cultivation practices and experimental research,three categories comprising 13 forest soil nutrient management schemes were designed to investigate the synergistic effects of Se,NPK compound fertilizers,and enzyme-microbe fermented organic fertilizers(EFOF)on embryo abortion,winged pod development,and seedling quality of Red sandalwood.[Results]Increasing the Se content in the soil,particularly in the form of selenite/Se(IV),within one month following the harvest of Red sandalwood pods and within two months prior to flower withering,significantly reduced embryo abortion percentage(EAP),and consequently improved seed quality and yield per plant.The effect of Se application was markedly greater than that of the single application of nitrogen(N),phosphorus(P),potassium(K),boron(B)fertilizers,or organic fertilizers.Furthermore,when Se was applied in combination with NPK compound fertilizers and EFOF,these beneficial effects were significantly enhanced.When Se(IV)was applied individually,the EAP decreased by 62.4%,reaching 24.8% at 8 weeks after flower withering(compared to 65.9%in the unmanaged control,UMC).Following winged pod maturation,the percentage of empty winged pods(PEWP)declined by 65.2% to 16.8%(UMC:48.2%),the average individual winged pod weight(IWPW)increased by 69.1%to 0.690 g per fruit(UMC:0.408 g),and the winged pod yield(WPY)rose by 214.8% to 4.03 kg(UMC:1.28 kg).Additionally,the blasted seed percentage(BSP)was reduced by 51.2% to 29.9%(UMC:61.3%),and the 100-seed weight(HSW)increased by 96.0%to 8.37 g(UMC:4.27 g).Following sowing in the nursery,the seedling emergence rate(SER)increased by 6.57-fold,reaching 59.8%(UMC:7.9%).Additionally,the whole plant biomass of 6-month-old seedlings increased by 52.9%,attaining 1.56 g(UMC:1.02 g).The combined application of EFOF+NPK+Se(IV)significantly reduced the EAP,PEWP,and BSP by 56.5%,46.0%,and 56.3%,respectively,compared to the single application of Se(IV).Furthermore,these percentages decreased by 79.7%,78.9%,and 71.8%,respectively,relative to the single application of NPK compound fertilizers,and by 79.0%,74.5%,and 72.1%,respectively,compared to the single application of EFOF.Additionally,the SER increased by 34.6%,141.0%,and 287.0%,respectively,when compared to the single application of Se(IV),NPK compound fertilizers,and EFOF.[Conclusions]Enhancing the nutrient status of forest soils,particularly the concentration of Se(IV),constitutes a critical technical approach to improving the resistance of Red sandalwood to low-temperature stress during its flowering and fruiting stages,thereby preventing embryo abortion.展开更多
Understanding soil disturbance behaviors under the impact of the winged subsoiler is critical for designing or optimizing the winged subsoiler(a primary subsoiling tool).In this study,a soil-winged subsoiler interacti...Understanding soil disturbance behaviors under the impact of the winged subsoiler is critical for designing or optimizing the winged subsoiler(a primary subsoiling tool).In this study,a soil-winged subsoiler interaction model was developed and the effects of winged subsoiler on soil disturbance behaviors were investigated using the discrete element method(DEM)simulations and lab soil-bin tests.The results showed that wings mainly affected the disturbance range and fragmentation degree of soil above them.The draught forces of share section(SS),arc section in the hardpan(ASHP),arc section in the top layer(ASTL)and line section(LS)were accounted for 69.53%,25.22%,4.73%and 0.52%of the total draught force of winged subsoiler;the lateral disturbance range from high to low of the soil at different depths followed the ranking:top layer(TL),hardpan disturbed by arc section(HDAS)and hardpan disturbed by share section(HDSS).Wings had the greatest influence on the draught force of ASHP.Adding wings to an arc-shaped subsoiler increased the disturbance areas of HDAS,TL and HDSS by 47.52%,7.74%and 4.59%,respectively,but meanwhile increased the total draught force by 36%.Compared with a non-winged subsoiler,winged subsoiler had higher soil looseness(15.83%),soil disturbance coefficient(58.59%),furrow width(448.65 mm)and soil disturbance area ratio(0.3835),but poorer soil surface flatness(19.79 mm)and lower soil loosening efficiency(39.35 mm²/N).This study provided critical information for optimizing winged subsoilers on aspects of improving soil loosening effectiveness and reducing draught force.展开更多
High-aspect-ratio aircraft are widely used in military and civilian fields,such as reconnaissance,surveillance,and attacks,due to their high lift-to-drag ratio,strong payload capability,significant endurance effect,an...High-aspect-ratio aircraft are widely used in military and civilian fields,such as reconnaissance,surveillance,and attacks,due to their high lift-to-drag ratio,strong payload capability,significant endurance effect,and good stealth performance.However,compared to conventional aircraft,high-aspect-ratio aircraft are more susceptible to gust disturbances during flight.In response to this phenomenon,a full-scale dynamic model of a high-aspect-ratio unmanned aerial vehicle was developed.Considering the coupling among control surfaces,structural forces,and aerodynamic forces,along with sensor,actuator,and delay effects,an H_(∞)control law was designed using the principle of singular value energy flow reduction and weighted function,with a PID(Proportional-Integral-Derivative)control law for comparison.The two controllers were then subjected to pulse-response and jury stability tests.Finally,wind tunnel tests were conducted to investigate the gust alleviation principle,in which gust disturbances were generated using gust generators and control surface self-excitation.The results present that the average wing root bending moment and wing tip overload under the PID control law decrease by approximately 30%,while under the H_(∞)control law,both the average wing root bending moment and wing tip overload reduction rate exceed 50%,with peaks reaching 60%.This validates the feasibility and efficiency of the designed H_(∞)controller.展开更多
The design of unmanned aerial vehicles(UAVs)revolves around the careful selection of materials that are both lightweight and robust.Carbon fiber-reinforced polymer(CFRP)emerged as an ideal option for wing construction...The design of unmanned aerial vehicles(UAVs)revolves around the careful selection of materials that are both lightweight and robust.Carbon fiber-reinforced polymer(CFRP)emerged as an ideal option for wing construction,with its mechanical qualities thoroughly investigated.In this study,we developed and optimized a conceptual UAV wing to withstand structural loads by establishing progressive composite stacking sequences,and we conducted a series of experimental characterizations on the resulting material.In the optimization phase,the objective was defined as weight reduction,while the Hashin damage criterion was established as the constraint for the optimization process.The optimization algorithm adaptively monitors regional damage criterion values,implementing necessary adjustments to facilitate the mitigation process in a cost-effective manner.Optimization of the analytical model using Simulia Abaqus~(TM)and a Python-based user-defined sub-routine resulted in a 34.7%reduction in the wing's structural weight after 45 iterative rounds.Then,the custom-developed optimization algorithm was compared with a genetic algorithm optimization.This comparison has demonstrated that,although the genetic algorithm explores numerous possibilities through hybridization,the custom-developed algorithm is more result-oriented and achieves optimization in a reduced number of steps.To validate the structural analysis,test specimens were fabricated from the wing's most critically loaded segment,utilizing the identical stacking sequence employed in the optimization studies.Rigorous mechanical testing revealed unexpectedly high compressive strength,while tensile and bending strengths fell within expected ranges.All observed failure loads remained within the established safety margins,thereby confirming the reliability of the analytical predictions.展开更多
Some of the most interesting areas in aerospace science and technologies are on either higher,faster,and larger systems or lower,slower,and smaller flying capabilities.In this paper,we present our perspectives on the ...Some of the most interesting areas in aerospace science and technologies are on either higher,faster,and larger systems or lower,slower,and smaller flying capabilities.In this paper,we present our perspectives on the aerodynamics related to small,fixed-wing as well as flapping-wing flight vehicles.From an evolutionary viewpoint,flyers have gone through many iterations,adaptations,and optimizations to balance their biological functions,including flight.In the low-Reynolds-number regime,the aerodynamic characteristics around a solid object differ from those observed at the scale of passenger-airplanes.Consequently,the optimal airfoil and wing shapes vary with vehicle size.As vehicle dimensions vary,non-proportional scaling between surface areas and weight shifts the dominance of physical mechanisms,leading to distinct operational parameters and technical requirements.With smaller flight vehicles,structural flexibility as well as anisotropic material properties become more pronounced,which causes qualitative changes in aerodynamics.The flapping motion of the wings,the interactions between wings,the synergistic characteristics of wing and tail,and the development of soft structures for better agility and flight performance are discussed.Low-Reynolds-number aerodynamics require collaborative innovation to optimize shape,motion,and structure of vehicles in accordance with the scaling laws.Together,progress on these fronts is reshaping the design paradigm of air vehicles and other types of robots with shrinking physical dimensions and more versatile capabilities to meet wider ranges of missions.展开更多
Avian wings are central to their remarkable flight ability and diverse life history strategies,including behaviors such as fighting and mating.These multifaceted functions are intricately tied to wing shape,which vari...Avian wings are central to their remarkable flight ability and diverse life history strategies,including behaviors such as fighting and mating.These multifaceted functions are intricately tied to wing shape,which varies significantly across species because of the complex interplay of evolutionary and ecological pressures.Many indices have been developed to quantify wing characteristics to facilitate the study and comparison of avian wing morphology across species.This study provides a comprehensive overview of existing quantitative methods for analyzing avian wing shapes.We then constructed a new quantification framework through the beta distribution,which can generate indices reflecting the shape of avian wings(center,dispersion,skewness,and kurtosis).Next,we used the flight feathers of 613 bird species to perform different quantitative analyses and explore the relationships between various wing shape quantification methods and life history traits,which serve as proxies for the selective forces shaping wing morphology.We find that the wing shape indices are more strongly associated with ecological variables than with morphological variables,especially for migration,habitat and territoriality.This research guides the selection of appropriate methods for wing shape analysis,contributing to a deeper understanding of avian morphology and its evolutionary drivers.展开更多
Aeroelastic control is a critical technique for high-aspect-ratio flexible wings.A novel aeroelastic control method is introduced,utilizing the internal Moving Mass Control(MMC)technique,which demonstrates the potenti...Aeroelastic control is a critical technique for high-aspect-ratio flexible wings.A novel aeroelastic control method is introduced,utilizing the internal Moving Mass Control(MMC)technique,which demonstrates the potential to fulfill hybrid control demands without incurring a drag penalty.Dynamic equations for a flexible wing equipped with a spanwise moving mass under unsteady aerodynamic loading are derived using mass position as the input variable.Controloriented analyses indicate that intrinsic structural frequencies,flutter characteristics,and gust response can be actively modified by varying the spanwise and chordwise positions of the mass element.Among these,the chordwise position exerts a more significant impact on the structural modes and flutter speed of the wing.A hybrid aeroelastic control system,incorporating motion planning and control law,is proposed to evaluate real-time performance in Active Flutter Suppression(AFS)and Gust Load Alleviation(GLA).Control outcomes suggest that,with a mass ratio of 1/16 and a half-chord installation area for the guide rail,flutter speed increases by about 10%.Additionally,excitation amplitudes across different gust frequencies are substantially mitigated,achieving a maximum reduction of vibration amplitude by about 73%.These findings offer a comprehensive understanding of the MMC technique and its application to flexible aircraft.展开更多
This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape me...This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape memory wires for a nonexplosive self-deploying wing mechanism.The fundamental concept of the design revolves around the utilization of NiTi wires,which contract upon electric heating.This contraction action severs the shear pin,consequently releasing the folded wings.The operational performance of the NiTi wire is thoroughly examined through a series of electro-thermo-mechanical tests,offering valuable insights for selecting the appropriate wire material.Moreover,the mechanical dynamics involved in the self-deploying process are elucidated through finite element simulations.The simulations highlight that the thermally-induced phase transformation within the NiTi wires generates substantial actuation forces,exceeding 700 N,and strokes of over 6 mm.These forces are deemed sufficient for breaking the aluminum shear pin and effecting wing deployment.The proposed mechanism’s practical viability is substantiated through prototype tests,which conclusively establish the superiority of the nonexplosive self-deploying wing mechanism when compared to conventional methods.The experimental outcomes underscore the mechanism’s capability to markedly reduce overload stress while remaining compliant with the designated requirements and constraints.展开更多
This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-dis...This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-distributed trailing-edge camber morphing is established based on Chebyshev polynomials,and the deformed wing surface is modeled by a spline surface according to the rib's morphing in the chordwise direction.The Computational Fluid Dynamics(CFD)method is adopted to obtain flow-field results and aerodynamic forces.The SST-γmodel is introduced and the overset mesh technique is adopted.The numerical results show that the spanwisedistributed trailing-edge morphing obviously changes the aerodynamic and energy transfer characteristics of the dynamic stall.Especially when the phase difference between the trailing-edge motion and the wing pitch is-π/2,the interaction between the three-dimensional(3-D)Leading-Edge Vortex(LEV)and Trailing-Edge Vortex(TEV)is strengthened,and the work done by the aerodynamic force turns negative.This indicates that the trailing-edge deformation has the potential to suppress the oscillation amplitude of stall flutter.We also found that as the trailing-edge camber morphing varies more complexly along the spanwise direction,the suppression effect decreases accordingly.展开更多
基金funded by the“Departments of Excellence”program of the Italian Ministry for University and Research(MIUR,2018-2022 and MUR,2023-2027).
文摘The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeographic studies(Wagner and Liebherr 1992;Peeters and Ito 2001;Helms 2018).
基金supported by the National Natural Science Foundation of China(No.12104047)。
文摘The rocket sled system is not only a high-speed dynamic ground test system,but also one of the future aerospace horizontal launch schemes.The winged load,as a common type of payload,has greater vibration and noise intensity than the wingless load.Due to the severe aerodynamic instability prior to separation,the head-up or head-down phenomena are more evident and the test accuracy significantly decreases.The high-precision computer fluid dynamics and aeroacoustic analysis are employed to explore the multifield coupling mechanism of a rocket sled with the winged payload in the wide speed range(Ma=0.5–2).The results show that as the incoming velocity increases,the cone angle of the shock wave of the rocket sled decreases,the shock pressure increases quickly,and the vortex between the slippers splits and gradually shrinks in size.The velocity of the rocket sled exerts little influence on the modal resonance frequency.The wing has a significant impact on aerodynamic noise,and as the sound pressure level rises,the propagation direction gradually shifts towards the rear and upper regions of the wing.
文摘In December 2021, the Datong Archaeological Research Institute conducted an excavation of the Lv Xu’s tomb in Zhijiabao Village, Pingcheng District, Datong. The Lv Xu’s tomb is a newly excavated tomb of the Pingcheng period of Northern Wei Dynasty, which contains a rare painted shallow relief stone coffin. On the northern side of the coffin, there is a picture of ascending owner flanked by an ox-headed bird with wings and a mouse-headed bird with wings on each side. There are also images of azure dragon, white tiger and vermilion bird in the lower part of the east, west and north walls respectively. The identity information and the roles these images played in the tomb are not to be clarified yet. This paper aims to use iconographic methods to interpret the painted shallow relief carvings of winged divine beasts on the stone coffin, to identify their characteristics, schematic sources, and cultural attributes, and to provide some foundational work for further research on the stone coffin of the Lv Xu’s tomb.
基金supported by the National Natural Science Foundation of China under Grant No.51975023&52322501supported in part by the National Natural Science Foundation of China under Grant No.U22B2040.
文摘In this paper,we present the development of our latest flapping-wing micro air vehicle(FW-MAV),named Explobird,which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g,enabling it to accomplish vertical take-off and hover flight.We devised a novel gear-based mechanism for the flapping system to achieve high lift capability and reliability and conducted extensive testing and analysis on the wings to optimise power matching and lift performance.The Explobird can deliver a peak lift-to-weight ratio of 1.472 and an endurance time of 259 s during hover flight powered by a single-cell LiPo battery.Considering the inherent instability of the prototype,we discuss the derivatives of its longitudinal system,underscoring the importance of feedback control,position of the centre of gravity,and increased damping.To demonstrate the effect of damping enhancement on stability,we also designed a passive stable FW-MAV.Currently,the vehicle is actively stabilised in roll by adjusting the wing root bars and in pitch through high-authority tail control,whereas yaw is passively stabilised.Through a series of flight tests,we successfully demonstrate that our prototype can perform vertical take-off and hover flight under wireless conditions.These promising results position the Explobird as a robust vehicle with high lift capability,paving the way towards the use of FW-MAVs for carrying load equipment in multiple tasks.
文摘Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.
基金supported by BK21 project of Department of Geology,Kyungpook National University, KNU
文摘A total of 16 specimens of fossil-winged fruits were found from the Middle Miocene marine deposits, Duho Formation, Pohang Basin, Korea. They were identified into two structurally different groups: 15 specimens into a winged fruit of Fraxinus, and one specimen of Liriodendron. The most samaras (13 specimens) were identified as Fraxinus oishii, which is characterized by narrowly ovate or ovate-elliptic shapes that are 2.7-3.6 cm in length and 0.7-1 cm in width (i/w ratio=3.4-4). The apexes of the Fraxinus oishii samara are round or slightly emarginated, and a seed of the samara is always located at the base, of which the general shape is narrow rhombic-ellipsoidal. The seed is 1.2-2 cm long and 0.5-0.7 cm wide. Two specimens are different from the samara of Fraxinus oishii. They have a 6.6 length/width ratio (3.3 cm long and 0.5 cm wide), and thus, are temporarily classified into the Fraxinus sp. One specimen was recognized as a winged seed of Liriodendron meisenense. The wing is broadly lanceolate to elliptic in shape, has a smooth, acute apex, and is approximately 3 cm long and 0.7 cm wide. Samaras of Fraxinus oishii and Liriodendron meisenense were early reported from the Middle Miocene deposits from North Korea, but these specimens are the first discovery in South Korea. Further study of the Duho Formation may connect flora relationships between North and South Korea.
基金supported by Kasetsart University Research and Development Institute,Kasetsart University,Thailandfunded by the Thailand Research Fund through the Senior Research Scholar Project(Grant No.RTA6180002)。
文摘Winged bean[Psophocarpus tetragonolobus(L.)DC.]is a vegetable legume crop.The center of origin,diversity and domestication of this crop are not known.In this study,we assessed the genetic diversity and population structure of 457 accessions of winged bean collected from six geographical regions(North,Northeast,East,West,and central,and South)in Thailand using 14 simple sequence repeat(SSR)markers.In total,the SSR markers detected only 55 alleles with an average of 3.9 alleles per locus.Observed heterozygosity was relatively high(0.15)and overall gene diversity was moderate(0.487).Gene diversity,allelic richness and observed heterozygosity in the six regions were comparable,while the estimated out-crossing rate was relatively high(16.4%).STRUCTURE analysis grouped the 457 winged bean accessions into three subpopulations.Neighbor-joining(NJ)analysis grouped all the accessions into two major clusters.Genetic groups identified by both STRUCTURE analysis and NJ analysis were unrelated to geographical origins.Principal coordinate analysis revealed no clear clustering of the winged bean accessions.Although genetic groups were not unrelated to geographical origins,most of the winged bean accessions with long pods(30 cm or higher in length)or having purple seed coats or purple young pods were grouped together.This suggested that the winged beans with long pods or with purple seed or purple young pods may have a single origin.Altogether,these results demonstrated that the genetic diversity of winged bean in Thailand was moderate with high genetic admixture.We argue that the high genetic admixture of the winged bean in Thailand is due to seed migration and relatively high outcrossing rate.
基金This research was funded by the National Natural Science Foundation of China to Xiaoling Tian(No.31901237)it was supported by the Young Academic and Technical Leader Raising Foundation of Yunnan Province to Yongpeng Ma(No.2018HB066).
文摘Brandisia hancei(Paulowniaceae)is a widely distributed shrub in karst regions in southwestern China.Its seeds have a membranous wing,and they mature just before the rainy season begins.To assess the effect of the wing on seed dispersal and germination of B.hancei,we measured the dispersal distance at varying wind speeds and release heights,falling duration from different release heights,floating duration on still water,rates of imbibition of water,and drying and soil adherence to seeds.Germination experiments were conducted on intact and de-winged seeds immediately after harvest.The wing increased the falling duration in still air and the floating ability on water.Dispersal distance of winged and de-winged seeds did not differ at a wind speed of 2.8 m s1,but at 3.6 and 4.0 m s1 dispersal distances were greater for de-winged than for winged seeds.Seed wing had little effect of absorption and retention of water,but significantly increased soil adherence to the seeds.Mature seeds were non-dormant and germinated to over 90%with a mean germination time of about 10 days.By combining the environmental conditions in karst habitat with the seed traits of B.hancei,we conclude that dispersal and germination of winged seeds are adapted to the precipitation seasonality in heterogeneous habitats absence of soil.
文摘We analyze morphometrics from a sample of 276 White-winged Black Tern(Chlidonias leucopterus) caught in north-west Australia on 4 March 2011. An estimated 40000 terns were present — the largest concentration of this species yet reported from Australia. When comparing juveniles with adults, only wing length and body mass differed significantly; however, juveniles were still easily recognized by plumage and wing molt as late as March. There was little evidence of any dramatic weight gain in adults before their northward migration. No morphological characteristic distinguishing sex was found. We confirmed that terns caught in this study did not appear to differ morphologically from those of the western palearctic populations. We describe wing molt based on data from 354 individuals captured and banded in Australia over 28 years. Wing molt proceeds in much the same way as found in other small terns.
文摘Ethnic people living on the Tibetan Plateau during the Tubo period have been well-known as not only strong and brave on horses,but they were also an ethnic group enriched with powerful creativity and rich imagination.From Tubo’s cultural art,we can observe a large amount of extremely fine artifacts.For instance,among
基金Supported by National Natural Science Foundation of China(31270674)Science and Technology Plan Project of Zhaoqing City(2019N012)National Undergraduate Science and Technology Innovation Training Program of China(202210580007).
文摘[Objectives]To explore the effect of selenium(Se)on inhibiting embryo abortion and enhancing seedling cultivation quality of Red sandalwood(Pterocarpus santalinus).[Methods]Based on prior cultivation practices and experimental research,three categories comprising 13 forest soil nutrient management schemes were designed to investigate the synergistic effects of Se,NPK compound fertilizers,and enzyme-microbe fermented organic fertilizers(EFOF)on embryo abortion,winged pod development,and seedling quality of Red sandalwood.[Results]Increasing the Se content in the soil,particularly in the form of selenite/Se(IV),within one month following the harvest of Red sandalwood pods and within two months prior to flower withering,significantly reduced embryo abortion percentage(EAP),and consequently improved seed quality and yield per plant.The effect of Se application was markedly greater than that of the single application of nitrogen(N),phosphorus(P),potassium(K),boron(B)fertilizers,or organic fertilizers.Furthermore,when Se was applied in combination with NPK compound fertilizers and EFOF,these beneficial effects were significantly enhanced.When Se(IV)was applied individually,the EAP decreased by 62.4%,reaching 24.8% at 8 weeks after flower withering(compared to 65.9%in the unmanaged control,UMC).Following winged pod maturation,the percentage of empty winged pods(PEWP)declined by 65.2% to 16.8%(UMC:48.2%),the average individual winged pod weight(IWPW)increased by 69.1%to 0.690 g per fruit(UMC:0.408 g),and the winged pod yield(WPY)rose by 214.8% to 4.03 kg(UMC:1.28 kg).Additionally,the blasted seed percentage(BSP)was reduced by 51.2% to 29.9%(UMC:61.3%),and the 100-seed weight(HSW)increased by 96.0%to 8.37 g(UMC:4.27 g).Following sowing in the nursery,the seedling emergence rate(SER)increased by 6.57-fold,reaching 59.8%(UMC:7.9%).Additionally,the whole plant biomass of 6-month-old seedlings increased by 52.9%,attaining 1.56 g(UMC:1.02 g).The combined application of EFOF+NPK+Se(IV)significantly reduced the EAP,PEWP,and BSP by 56.5%,46.0%,and 56.3%,respectively,compared to the single application of Se(IV).Furthermore,these percentages decreased by 79.7%,78.9%,and 71.8%,respectively,relative to the single application of NPK compound fertilizers,and by 79.0%,74.5%,and 72.1%,respectively,compared to the single application of EFOF.Additionally,the SER increased by 34.6%,141.0%,and 287.0%,respectively,when compared to the single application of Se(IV),NPK compound fertilizers,and EFOF.[Conclusions]Enhancing the nutrient status of forest soils,particularly the concentration of Se(IV),constitutes a critical technical approach to improving the resistance of Red sandalwood to low-temperature stress during its flowering and fruiting stages,thereby preventing embryo abortion.
基金The authors gratefully acknowledge the financial assistance received from the National Key Research and Development Program of China(Grant No.2016YFD0200601,2016YFD020060101)and the Key Industry Chain Innovation Project of Shaanxi Province(Grant No.2018ZDCXL-NY-03-06).
文摘Understanding soil disturbance behaviors under the impact of the winged subsoiler is critical for designing or optimizing the winged subsoiler(a primary subsoiling tool).In this study,a soil-winged subsoiler interaction model was developed and the effects of winged subsoiler on soil disturbance behaviors were investigated using the discrete element method(DEM)simulations and lab soil-bin tests.The results showed that wings mainly affected the disturbance range and fragmentation degree of soil above them.The draught forces of share section(SS),arc section in the hardpan(ASHP),arc section in the top layer(ASTL)and line section(LS)were accounted for 69.53%,25.22%,4.73%and 0.52%of the total draught force of winged subsoiler;the lateral disturbance range from high to low of the soil at different depths followed the ranking:top layer(TL),hardpan disturbed by arc section(HDAS)and hardpan disturbed by share section(HDSS).Wings had the greatest influence on the draught force of ASHP.Adding wings to an arc-shaped subsoiler increased the disturbance areas of HDAS,TL and HDSS by 47.52%,7.74%and 4.59%,respectively,but meanwhile increased the total draught force by 36%.Compared with a non-winged subsoiler,winged subsoiler had higher soil looseness(15.83%),soil disturbance coefficient(58.59%),furrow width(448.65 mm)and soil disturbance area ratio(0.3835),but poorer soil surface flatness(19.79 mm)and lower soil loosening efficiency(39.35 mm²/N).This study provided critical information for optimizing winged subsoilers on aspects of improving soil loosening effectiveness and reducing draught force.
基金supported by the National Natural Science Foundation of China(Nos.12272104,U22B2013).
文摘High-aspect-ratio aircraft are widely used in military and civilian fields,such as reconnaissance,surveillance,and attacks,due to their high lift-to-drag ratio,strong payload capability,significant endurance effect,and good stealth performance.However,compared to conventional aircraft,high-aspect-ratio aircraft are more susceptible to gust disturbances during flight.In response to this phenomenon,a full-scale dynamic model of a high-aspect-ratio unmanned aerial vehicle was developed.Considering the coupling among control surfaces,structural forces,and aerodynamic forces,along with sensor,actuator,and delay effects,an H_(∞)control law was designed using the principle of singular value energy flow reduction and weighted function,with a PID(Proportional-Integral-Derivative)control law for comparison.The two controllers were then subjected to pulse-response and jury stability tests.Finally,wind tunnel tests were conducted to investigate the gust alleviation principle,in which gust disturbances were generated using gust generators and control surface self-excitation.The results present that the average wing root bending moment and wing tip overload under the PID control law decrease by approximately 30%,while under the H_(∞)control law,both the average wing root bending moment and wing tip overload reduction rate exceed 50%,with peaks reaching 60%.This validates the feasibility and efficiency of the designed H_(∞)controller.
基金supported by the Istanbul Technical University Office of Scientific Research Projects(ITUBAPSIS),under grant MYL-2022-43776。
文摘The design of unmanned aerial vehicles(UAVs)revolves around the careful selection of materials that are both lightweight and robust.Carbon fiber-reinforced polymer(CFRP)emerged as an ideal option for wing construction,with its mechanical qualities thoroughly investigated.In this study,we developed and optimized a conceptual UAV wing to withstand structural loads by establishing progressive composite stacking sequences,and we conducted a series of experimental characterizations on the resulting material.In the optimization phase,the objective was defined as weight reduction,while the Hashin damage criterion was established as the constraint for the optimization process.The optimization algorithm adaptively monitors regional damage criterion values,implementing necessary adjustments to facilitate the mitigation process in a cost-effective manner.Optimization of the analytical model using Simulia Abaqus~(TM)and a Python-based user-defined sub-routine resulted in a 34.7%reduction in the wing's structural weight after 45 iterative rounds.Then,the custom-developed optimization algorithm was compared with a genetic algorithm optimization.This comparison has demonstrated that,although the genetic algorithm explores numerous possibilities through hybridization,the custom-developed algorithm is more result-oriented and achieves optimization in a reduced number of steps.To validate the structural analysis,test specimens were fabricated from the wing's most critically loaded segment,utilizing the identical stacking sequence employed in the optimization studies.Rigorous mechanical testing revealed unexpectedly high compressive strength,while tensile and bending strengths fell within expected ranges.All observed failure loads remained within the established safety margins,thereby confirming the reliability of the analytical predictions.
基金supported by the Research Grants Council(RGC)of the Government of Hong Kong Special Administrative Region(HKSAR)with RGC/GRF Project(Grant Nos.16206321 and 14113824).
文摘Some of the most interesting areas in aerospace science and technologies are on either higher,faster,and larger systems or lower,slower,and smaller flying capabilities.In this paper,we present our perspectives on the aerodynamics related to small,fixed-wing as well as flapping-wing flight vehicles.From an evolutionary viewpoint,flyers have gone through many iterations,adaptations,and optimizations to balance their biological functions,including flight.In the low-Reynolds-number regime,the aerodynamic characteristics around a solid object differ from those observed at the scale of passenger-airplanes.Consequently,the optimal airfoil and wing shapes vary with vehicle size.As vehicle dimensions vary,non-proportional scaling between surface areas and weight shifts the dominance of physical mechanisms,leading to distinct operational parameters and technical requirements.With smaller flight vehicles,structural flexibility as well as anisotropic material properties become more pronounced,which causes qualitative changes in aerodynamics.The flapping motion of the wings,the interactions between wings,the synergistic characteristics of wing and tail,and the development of soft structures for better agility and flight performance are discussed.Low-Reynolds-number aerodynamics require collaborative innovation to optimize shape,motion,and structure of vehicles in accordance with the scaling laws.Together,progress on these fronts is reshaping the design paradigm of air vehicles and other types of robots with shrinking physical dimensions and more versatile capabilities to meet wider ranges of missions.
基金supported by the National Natural Science Foundation of China(No.32170491)the Scientific Research Team Project of the College of Life Sciences,Beijing Normal University in 2024。
文摘Avian wings are central to their remarkable flight ability and diverse life history strategies,including behaviors such as fighting and mating.These multifaceted functions are intricately tied to wing shape,which varies significantly across species because of the complex interplay of evolutionary and ecological pressures.Many indices have been developed to quantify wing characteristics to facilitate the study and comparison of avian wing morphology across species.This study provides a comprehensive overview of existing quantitative methods for analyzing avian wing shapes.We then constructed a new quantification framework through the beta distribution,which can generate indices reflecting the shape of avian wings(center,dispersion,skewness,and kurtosis).Next,we used the flight feathers of 613 bird species to perform different quantitative analyses and explore the relationships between various wing shape quantification methods and life history traits,which serve as proxies for the selective forces shaping wing morphology.We find that the wing shape indices are more strongly associated with ecological variables than with morphological variables,especially for migration,habitat and territoriality.This research guides the selection of appropriate methods for wing shape analysis,contributing to a deeper understanding of avian morphology and its evolutionary drivers.
基金supported by the National Natural Science Foundation of China(No.12102096)the Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515011885)the Research Fund of National Key Laboratory of Aerospace Physics in Fluids,China(No.2024-APF-KFQMJJ-08)。
文摘Aeroelastic control is a critical technique for high-aspect-ratio flexible wings.A novel aeroelastic control method is introduced,utilizing the internal Moving Mass Control(MMC)technique,which demonstrates the potential to fulfill hybrid control demands without incurring a drag penalty.Dynamic equations for a flexible wing equipped with a spanwise moving mass under unsteady aerodynamic loading are derived using mass position as the input variable.Controloriented analyses indicate that intrinsic structural frequencies,flutter characteristics,and gust response can be actively modified by varying the spanwise and chordwise positions of the mass element.Among these,the chordwise position exerts a more significant impact on the structural modes and flutter speed of the wing.A hybrid aeroelastic control system,incorporating motion planning and control law,is proposed to evaluate real-time performance in Active Flutter Suppression(AFS)and Gust Load Alleviation(GLA).Control outcomes suggest that,with a mass ratio of 1/16 and a half-chord installation area for the guide rail,flutter speed increases by about 10%.Additionally,excitation amplitudes across different gust frequencies are substantially mitigated,achieving a maximum reduction of vibration amplitude by about 73%.These findings offer a comprehensive understanding of the MMC technique and its application to flexible aircraft.
基金Supported by National Natural Science Foundation of China(Grant No.12372156).
文摘This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape memory wires for a nonexplosive self-deploying wing mechanism.The fundamental concept of the design revolves around the utilization of NiTi wires,which contract upon electric heating.This contraction action severs the shear pin,consequently releasing the folded wings.The operational performance of the NiTi wire is thoroughly examined through a series of electro-thermo-mechanical tests,offering valuable insights for selecting the appropriate wire material.Moreover,the mechanical dynamics involved in the self-deploying process are elucidated through finite element simulations.The simulations highlight that the thermally-induced phase transformation within the NiTi wires generates substantial actuation forces,exceeding 700 N,and strokes of over 6 mm.These forces are deemed sufficient for breaking the aluminum shear pin and effecting wing deployment.The proposed mechanism’s practical viability is substantiated through prototype tests,which conclusively establish the superiority of the nonexplosive self-deploying wing mechanism when compared to conventional methods.The experimental outcomes underscore the mechanism’s capability to markedly reduce overload stress while remaining compliant with the designated requirements and constraints.
基金co-supported by the National Natural Science Foundation of China(No.12472332)。
文摘This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-distributed trailing-edge camber morphing is established based on Chebyshev polynomials,and the deformed wing surface is modeled by a spline surface according to the rib's morphing in the chordwise direction.The Computational Fluid Dynamics(CFD)method is adopted to obtain flow-field results and aerodynamic forces.The SST-γmodel is introduced and the overset mesh technique is adopted.The numerical results show that the spanwisedistributed trailing-edge morphing obviously changes the aerodynamic and energy transfer characteristics of the dynamic stall.Especially when the phase difference between the trailing-edge motion and the wing pitch is-π/2,the interaction between the three-dimensional(3-D)Leading-Edge Vortex(LEV)and Trailing-Edge Vortex(TEV)is strengthened,and the work done by the aerodynamic force turns negative.This indicates that the trailing-edge deformation has the potential to suppress the oscillation amplitude of stall flutter.We also found that as the trailing-edge camber morphing varies more complexly along the spanwise direction,the suppression effect decreases accordingly.