In the context of global warming, the increasing wildfire frequency has become a critical climate research focus in North America. This study used the Community Earth System Model(CESM 1.2) to investigate the impacts ...In the context of global warming, the increasing wildfire frequency has become a critical climate research focus in North America. This study used the Community Earth System Model(CESM 1.2) to investigate the impacts of 20thcentury wildfires on North American climate and hydrology. Summer represents the peak wildfire season in North America, with the Gulf of Mexico and Midwest regions experiencing the most severe effects. Wildfires not only damage vegetation during the fire season but also extend prolonged impacts into non-fire periods, showing distinct seasonal variations. In spring, wildfires increase surface albedo, triggering a cooling effect through enhanced snow cover and delayed snowmelt. Conversely, summer and autumn surface warming stems primarily from wildfire-suppressed vegetation transpiration. Warming near the Gulf of Mexico enhances moisture transport and precipitation, particularly in summer and autumn. Reduced evaporation and increased precipitation from the Gulf of Mexico significantly altered the hydrological cycle across North America, leading to increased runoff continent-wide.展开更多
The primary objective of this paper is to present a comprehensive case study on monitoring wildfires in Nakhon Nayok, Thailand, utilizing Earth observation platforms. This initiative project has been undertaken by the...The primary objective of this paper is to present a comprehensive case study on monitoring wildfires in Nakhon Nayok, Thailand, utilizing Earth observation platforms. This initiative project has been undertaken by the Excellence Center of Space Technology and Research (ECSTAR), in partnership with its spin-off startup, TeroSpace. The study aims to provide an in-depth analysis of the wildfire incidents in the region, utilizing advanced technologies such as satellite imagery and data analytics, and to identify ways to improve future wildfire management. In particular, the paper focuses on the wildfires including thermal area comparison that ravaged the land in Nakhon Nayok Province in central Thailand from March to April 18th, 2023. To conduct this study, the ECSTAR-TeroSpace analytic team utilized satellite images from Earth observation platforms: MODIS and Sentinel-2A. By presenting this case study, this paper contributes to the broader understanding of how to monitor and manage wildfires in a changing climate. The findings of this study underscore the importance of proactive and collaborative efforts in mitigating the negative impacts of wildfires in Nakhon Nayok and other regions in Thailand.展开更多
Fires play an essential part in the maintenance of the environment, but amplified fire activity often leads to adverse effects in the environment such as destruction of property and loss of life. Botswana has experien...Fires play an essential part in the maintenance of the environment, but amplified fire activity often leads to adverse effects in the environment such as destruction of property and loss of life. Botswana has experienced wildfires that are caused by humans intentionally and unintentionally. Some of these wildfires grow into mega</span><span style="font-family:""> </span><span style="font-family:Verdana;">fires such as the 2008 wildfires. Data of wildfires reported in Botswana from the Department of Forestry and Range Resources and the frequency of occurrence was studied and analyzed. It shows the period of 2006-2017, Ghanzi and Ngamiland districts were mostly affected by wildfires. These districts have protected land such as the wildlife parks which may lead to </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">outbreak of natural wildfires that burns unnoticed due to minimal movements of people. The wildfires reported in each district show an increase over the years and this may affect the smooth running of operations.展开更多
The coal-bearing strata in the southern Junggar Basin in northwestern China have recently attracted the attention of coal geologists. Its abundance of coal resources is of great interest as there is a potential of unl...The coal-bearing strata in the southern Junggar Basin in northwestern China have recently attracted the attention of coal geologists. Its abundance of coal resources is of great interest as there is a potential of unlocking details about the palaeoclimatic information. Coal deposits have the capacity to record wildfire events, even those with inefficient combustions. To characterize wildfire events and palaeoclimatic history of the Middle Jurassic Xishanyao Formation(Aalenian and Bajocian ages), 22 coal samples from borehole cores and coal mines in the southern Junggar Basin were collected and their macerals were analyzed. The results indicated that fusinite and semi-fusinite were the dominant components of inertinite with proportions of 35.27% and 54.67%, respectively. The presence of inertinite is an indicator that wildfires occurred at the time of peat land development, and the widespread occurrence suggests large scale wildfires during the Middle Jurassic. This study proposes a new parameter for the evaluation of wildfire features by combining burning frequency and burning temperature. The comprehensive evaluation index(CEI) was influenced by the lacustrine basin level and ancient plant types from a sequence framework. During the Middle Jurassic, most wildfires were surface fires with low level and ground fire with high level. High oxygen levels were estimated in the lower, middle, and upper members of the Xishanyao Formation with corresponding to 26.78%, 24.55%, and 23.55%, respectively. The high oxygen levels would be the primary cause of repeated wildfires in the Middle Jurassic. These results are helpful for understanding palaeoclimatic changes in the Middle Jurassic.展开更多
Charcoal is abundant in most post-Silurian sedimentary sequences and even in some volcanic rocks. The study of charcoal can provide important information on not only what plants were being burned but also on how the c...Charcoal is abundant in most post-Silurian sedimentary sequences and even in some volcanic rocks. The study of charcoal can provide important information on not only what plants were being burned but also on how the charcoal residue was formed. Most charcoal encountered in the sedimentary record is a result of lightning-ignited wildfires but volcanic activity may also act as an ignition source. Charcoal preserves exquisite anatomical data that can be studied by a range of microscopical techniques including scanning electron microscopy that allows the identity of the plants to be determined. Fires have a major impact on a range of environments and ecosystems. The elevated oxygen content of the atmosphere indicates that the Cretaceous can be considered a "high-fire" world. Fire activity should be taken into account in Cretaceous vegetation and climate models. The occurrence of charcoal at the Cretaceous-Tertiary Boundary has been highlighted as evidence for a global fire following an asteroid impact, but this interpretation is questionable.Charcoal may be found within volcanic rocks, especially from deposits of pyroclastic flows and from basaltic lavas. This may provide data on the entombed vegetation but reflectance data may be used to provide interpretations of deposit temperatures. Charcoal is information-rich but yet is an under-utilized resource. Fire is an expression of life on Earth and an index of life's history and is relevant for geology, biology, human history, physics and global chemistry.展开更多
The Santa Cruz Mountain range in northern California is a coastal landscape with a history of extensive forest logging and frequent large wildfires that have recently destroyed numerous residential structures at the w...The Santa Cruz Mountain range in northern California is a coastal landscape with a history of extensive forest logging and frequent large wildfires that have recently destroyed numerous residential structures at the wildland interface. Results from Landsat satellite image time-series analysis since 1984 of the study area within the Los Gatos Creek and Corralitos Creek watersheds showed that none of the severe drought periods since the 1980s have notably inhibited rapid tree and shrub regrowth rates on steep hill slopes burned recently by the 1985 Lexington Fire and the 2008 Summit Fire. In high burn severity areas of both fires, post-fire vegetation types showed a marked increase in shrub cover, mainly at the expense of evergreen tree cover. Most of these low (<3 m), dense stands of evergreen woody species have regenerated in as little as five years from bare charred ground. A combination of Landsat and Laser Altimeter (GLAS) satellite sensor data revealed that exposed south-facing slopes are presently supporting 200 to 240 Mg·ha<sup>-1</sup> of standing woody biomass on the burned areas. This study is the first of its kind to utilize a full 30-year record of Landsat vegetation index data to monitor tree and shrub regrowth after stand-replacing wildfires in California.展开更多
This study investigated the relationship between climate and biophysical variables in burned areas in Iran.The fire burned area(FBA)product(Fire CCI 5.1.1),land surface temperature(MOD11C3C),vegetation index(MOD13A1),...This study investigated the relationship between climate and biophysical variables in burned areas in Iran.The fire burned area(FBA)product(Fire CCI 5.1.1),land surface temperature(MOD11C3C),vegetation index(MOD13A1),and climate variables such as temperature,wind speed,relative humidity,and volumetric soil moisture from the ERA5 reanalysis dataset were used.Pearson correlation coefficient was used to determine the relationship between biophysical and climate variables and fire occurrence.The results show that FBA increased by 1.7 hectares/decade from 2001 to 2020.The high FBA in 2010(the black summer of Iran)was due to high temperatures and significant heatwaves that led to extensive wildfires.Although anthropogenic activities are considered a significant cause of wildfires,several variables,including increased temperatures,less precipitation,relative humidity,and wind speed and direction,contribute to the extent and occurrence of wildfires.The country’s FBA hotspot is in the Arasbaran region during the summer season.Temperature and relative humidity are the most significant variables influencing the occurrence of wildfires.The results show the vulnerability of Iran s forests and their high potential for fires.Considering the frequency of fire occurrences in Iran and the limited equipment,fire prevention plans should be carried out by applying proper management in high-risk regions.展开更多
The relationship between climate change and wildfires was examined to summarize factors associated with vulnerability to wildfires. The complex and cyclic nature of interaction effects between the two was highlighted ...The relationship between climate change and wildfires was examined to summarize factors associated with vulnerability to wildfires. The complex and cyclic nature of interaction effects between the two was highlighted and the following conclusions were drawn. Climate change is leading to more frequent wildfires with higher intensity, resulting in release of more gasses and particulate matter that further exacerbates the progression of climate change. Direct and indirect impacts are detailed in the main body. A new fire management policy is deemed necessary, with a more local approach being recommended. Human impacts were found to further complicate the already complex relationship. It is recommended to treat accidental and incendiary fires separately for the purpose of evaluating fire management regimes. This requires successful advances in current fire investigation techniques.展开更多
Rapid recovery of pioneer shrub and forest patch cover can reduce soil erosion, nutrient runoff and degradation of stream habitats, and promote small mammal and avian biodiversity following stand-replacing wildfires. ...Rapid recovery of pioneer shrub and forest patch cover can reduce soil erosion, nutrient runoff and degradation of stream habitats, and promote small mammal and avian biodiversity following stand-replacing wildfires. Landsat imagery from the past 25+ years was analyzed to understand patterns and rates of vegetation recovery, focusing on high burn severity (HBS) patches, within wildfire areas dating from the late 1940s in the Sierra-Nevada region of California. Normalized difference vegetation index (NDVI) levels indicative of recovered woody cover within HBS areas were analyzed starting in 1985 to quantify regrowth of patch dynamics. Analysis of landscape metrics showed that the percentage of total HBS area comprised by the largest patch of recovered woody cover was relatively small in all fires that occurred since 1995, but increased rapidly with time since fire. Patch complexity of recovered woody cover decreased notably after more than 50 years of regrowth, but was not readily associated with time for fires that occurred since the mid 1990s. Patch complexity of dense woody cover was consistently high in fires after 1995 and increased with the elevation of HBS areas. The aggregation level of patches with recovery of woody cover increased steadily with time since fire. The study approach using satellite remote sensing can be expanded to assess the consequences of stand-replacing wildfires in all forests of the region.展开更多
Evaluated Weather Research and Forecasting model inline with chemistry (WRF/Chem) simulations of the 2009 Crazy Mountain Complex wildfire in Interior Alaska served as a testbed for typical Alaska wildfire-smoke condit...Evaluated Weather Research and Forecasting model inline with chemistry (WRF/Chem) simulations of the 2009 Crazy Mountain Complex wildfire in Interior Alaska served as a testbed for typical Alaska wildfire-smoke conditions. A virtual unmanned air vehicle (UAV) sampled temperatures, dewpoint temperatures, primary inert and reactive gases and particular matter of different sizes as well as secondary pollutants from the WRF/Chem results using different sampling patterns, altitudes and speeds to investigate the impact of the sampling design on obtained mean distributions. In this experimental design, the WRF/Chem data served as the “grand truth” to assess the mean distributions from sampling. During frontal passage, the obtained mean distributions were sensitive to the flight patterns, speeds and heights. For inert constituents mean distributions from sampling agreed with the “grand truth” within a factor of two at 1000 m. Mean distributions of gases involved in photochemistry differed among flight patterns except for ozone. The diurnal cycle of these gases’ concentrations led to overestimation (underestimation) of 20 h means in areas of high (low) concentrations as compared to the “grand truth.” The mean ozone distribution was sensitive to the speed of the virtual UAV. Particulate matter showed the strongest sensitivity to the flight patterns, especially during precipitation.展开更多
Years after wildfires burn forests and watersheds(分水岭)in the Western US,pollutants left behind continue to poison rivers and streams,and have existed for a longer time than scientists previously estimated.
Wildfires burn approximately 3%-4% of the global land area annually,resulting in massive emissions of greenhouse gases and air pollutants.Over the past two decades,there has been a declining trend in both global burne...Wildfires burn approximately 3%-4% of the global land area annually,resulting in massive emissions of greenhouse gases and air pollutants.Over the past two decades,there has been a declining trend in both global burned area and wildfire emissions.This trend is largely attributed to a decrease in wildfire activity in Africa,which accounts for a substantial portion of the total burned area and emissions.However,the northern high-latitude regions of Asia and North America have witnessed substantial interannual variability in wildfire activity,with several severe events occurring in recent years.Climate plays a pivotal role in influencing wildfire activity and has led to more wildfires in high-latitude regions.These wildfires pose significant threats to climate,ecosystems,and human health.Given recent changes in wildfire patterns and their impacts,it is critical to understand the contributors of wildfires,focus on deteriorating high-latitude areas,and address health risks in poorly managed areas tomitigate wildfire effects.展开更多
Strongly affected by the escalating impacts of climate change,wildfires have been increasing in frequency and severity around the world.The primary aim of this study was the development of specific territorial measure...Strongly affected by the escalating impacts of climate change,wildfires have been increasing in frequency and severity around the world.The primary aim of this study was the development of specific territorial measures—estimating the optimal locations of firefighting resources—to enhance the spatial resilience to wildfires in the fire-prone region of Chalkidiki Prefecture in northern Greece.These measures focus on the resistance to wildfires and the adaptation of strategies to wildfire management,based on the estimation of burn probability,including the effect of anthropogenic factors on fire ignition.The proposed location schemes of firefighting resources such as vehicles consider both the susceptibility to fire and the influence of the topography on travel simulation,highlighting the impact of road slope on the initial firefighting attack.The spatial scheme,as well as the number of required firefighting forces is totally differentiated due to slope impact.When we ignore the topography effect,a minimum number of fire vehicles is required to achieve the maximization of coverage(99.2%of the entire study area)giving priority to the most susceptible regions(that is,employing 18 of 24 available fire vehicles).But when we adopt more realistic conditions that integrate the slope effect with travel time,the model finds an optimal solution that requires more resources(that is,employing all 24 available fire vehicles)to maximize the coverage of the most vulnerable regions within 27 min.This process achieves 80%of total coverage.The proposed methodology is characterized by a high degree of flexibility,and provides optimized solutions to decision makers,while considering key factors that greatly affect the effectiveness of the initial firefighting attack.展开更多
The Carboniferous,an important coal-forming period in geological history,was characterized by extensive vegetation and high oxygen levels.Evidence suggests frequent wildfires took place during this time,especially in ...The Carboniferous,an important coal-forming period in geological history,was characterized by extensive vegetation and high oxygen levels.Evidence suggests frequent wildfires took place during this time,especially in peatlands.However,the control mechanisms for changes in wildfire activity in peatlands during this period remain unclear.In this study,evidence from the Gzhelian in the Ordos Basin,such as the inertinite/vitrinite(Ⅰ/Ⅴ)ratio,indicated varying wildfire frequencies.Climate indicators(CaO/MgO and CaO/MgO·Al_(2)O_(3))revealed that high-frequency wildfires mainly occurred in warm and humid climates.Based on former age constraints,we deduced that orbital cycles(long eccentricity)controlled the climate influence on peatland wildfires during the Gzhelian.Higher eccentricity brought more sunshine and rainfall,creating warmer,wetter peatlands conducive to vegetation growth,which increased fuel loads and led to more wildfires.Global Gzhelian wildfire records show that wildfires occurred mainly in tropical regions with abundant vegetation,reinforcing the idea that fuel loads drove fire activity.While wildfires can release mercury(Hg),the frequent volcanic activity during this period likely contributed significantly to Hg enrichment.展开更多
Fires have historically played a natural role in shaping ecosystems,contributing to biodiversity and ecological renewal.However,in the Anthropocene,the interplay of climate change and human activities has exacerbated ...Fires have historically played a natural role in shaping ecosystems,contributing to biodiversity and ecological renewal.However,in the Anthropocene,the interplay of climate change and human activities has exacerbated fire frequency and intensity,with cascading impacts on soil health,biodiversity,and ecosystem resilience.This study highlights the complex effects of fire on soil ecosystems,particularly in Mediterranean environments,by analysing the aftermath of the 2021 wildfire in Aspromonte National Park.The results of this research reveal the multifaceted impact of fire on soil composition and biological activity.Burned areas exhibited altered microbial communities,characterized by a higher biomass of bacteria and actinomycetes but reduced fungal presence,aligning with findings that fungi are more sensitive to heat than other microorganisms,particularly under moist conditions.Changes in enzyme activity,such as decreased oxidoreductase and hydrolase activities but elevated catalase activity,suggest significant metabolic adjustments among surviving microbial strains.Additionally,increased potassium,magnesium,sulphates,and total phenols in burned areas point to shifts in nutrient dynamics driven by the combustion of organic matter.Fire also impacted microarthropod communities but the rapid recovery of microarthropod communities that has been recognized by numerous authors suggests that fire may not universally impair soil biodiversity in Mediterranean environments.The transition zone played a critical intermediate role,retaining a higher organic matter content than the unburned zone,suggesting its potential as a buffer or recovery zone in post-fire dynamics.Microarthropod communities,while initially affected,demonstrated resilience in line with previous research,indicating that Mediterranean soils might possess adaptive mechanisms to recover from low-to moderate-severity wildfires.Importantly,the incorporation of ashes and partially burned organic material in such fires may lead to enhanced soil fertility,fostering bacterial and actinomycetes proliferation and facilitating ecosystem recovery.展开更多
The El Niño-Southern Oscillation(ENSO)is a key driver of global climate variability,profoundly influencing regional fire activities and associated pollutant emissions.This study investigates the impacts of ENSO o...The El Niño-Southern Oscillation(ENSO)is a key driver of global climate variability,profoundly influencing regional fire activities and associated pollutant emissions.This study investigates the impacts of ENSO on global fire emissions and fire-induced PM_(2.5)concentrations in 2000-2023.During El Niño events,global fire emissions increase by 5.9%-20.0%with regional hotspots in Indonesia,North America,and Australia,driven by anomalous warming and rainfall deficits.In contrast,La Niña events result in a 3.2%-9.9%reduction in global fire emissions,with regional variability depending on the fire inventories used.In response,fire-induced PM_(2.5)concentrations increase substantially during El Niño,rising by 27.5%-71.0%in Indonesia,49.2%-116.5%in North America,and 17.5%-42.6%in Australia.Conversely,La Niña events lead to decreases of 26.6%-52.5%,19.4%-37.3%,14.5%-24.4%in these regions,respectively.These findings highlight the critical role of ENSO in shaping fire emissions and air pollution from regional to global scales,providing valuable insights for mitigating the impacts of climatic extremes on air quality.展开更多
Effective wildland fire management requires real-time access to comprehensive and distilled information from different data sources.The Digital Twin technology becomes a promising tool in optimizing the processes of w...Effective wildland fire management requires real-time access to comprehensive and distilled information from different data sources.The Digital Twin technology becomes a promising tool in optimizing the processes of wildfire pre-vention,monitoring,disaster response,and post-fire recovery.This review examines the potential utility of Digital Twin in wildfire management and aims to inspire further exploration and experimentation by researchers and practitioners in the fields of environment,forestry,fire ecology,and firefighting services.By creating virtual replicas of wildfire in the physical world,a Digital Twin platform facilitates data integration from multiple sources,such as remote sensing,weather forecast-ing,and ground-based sensors,providing a holistic view of emergency response and decision-making.Furthermore,Digital Twin can support simulation-based training and scenario testing for prescribed fire planning and firefighting to improve preparedness and response to evacuation and rescue.Successful applications of Digital Twin in wildfire management require horizontal collaboration among researchers,practitioners,and stakeholders,as well as enhanced resource sharing and data exchange.This review seeks a deeper understanding of future wildland fire management from a technological perspective and inspiration of future research and implementation.Further research should focus on refining and validating Digital Twin models and the integration into existing fire management operations,and then demonstrating them in real wildland fires.展开更多
The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There i...The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There is a need to evaluate and enhance wildfire prediction methods,focusing on their application during extended periods of intense heat and drought.This study reviews various wildfire modelling approaches,including traditional physical,semi-empirical,numerical,and emerging machine learning(ML)-based models.We critically assess these models’capabilities in predicting fire susceptibility and post-ignition spread,highlighting their strengths and limitations.Our findings indicate that while traditional models provide foundational insights,they often fall short in dynamically estimating parameters and predicting ignition events.Cellular automata models,despite their potential,face challenges in data integration and computational demands.Conversely,ML models demonstrate superior efficiency and accuracy by leveraging diverse datasets,though they encounter interpretability issues.This review recommends hybrid modelling approaches that integrate multiple methods to harness their combined strengths.By incorporating data assimilation techniques with dynamic forecasting models,the predictive capabilities of ML-based predictions can be significantly enhanced.This review underscores the necessity for continued refinement of these models to ensure their reliability in real-world applications,ultimately contributing to more effective wildfire mitigation and management strategies.Future research should focus on improving hybrid models and exploring new data integration methods to advance predictive capabilities.展开更多
Wildfires significantly disrupt the physical and hydrologic conditions of the environment,leading to vegetation loss and altered surface geo-material properties.These complex dynamics promote post-fire gully erosion,y...Wildfires significantly disrupt the physical and hydrologic conditions of the environment,leading to vegetation loss and altered surface geo-material properties.These complex dynamics promote post-fire gully erosion,yet the key conditioning factors(e.g.,topography,hydrology)remain insufficiently understood.This study proposes a novel artificial intelligence(AI)framework that integrates four machine learning(ML)models with Shapley Additive Explanations(SHAP)method,offering a hierarchical perspective from global to local on the dominant factors controlling gully distribution in wildfireaffected areas.In a case study of Xiangjiao catchment burned on March 28,2020,in Muli County in Sichuan Province of Southwest China,we derived 21 geoenvironmental factors to assess the susceptibility of post-fire gully erosion using logistic regression(LR),support vector machine(SVM),random forest(RF),and convolutional neural network(CNN)models.SHAP-based model interpretation revealed eight key conditioning factors:topographic position index(TPI),topographic wetness index(TWI),distance to stream,mean annual precipitation,differenced normalized burn ratio(d NBR),land use/cover,soil type,and distance to road.Comparative model evaluation demonstrated that reduced-variable models incorporating these dominant factors achieved accuracy comparable to that of the initial-variable models,with AUC values exceeding 0.868 across all ML algorithms.These findings provide critical insights into gully erosion behavior in wildfire-affected areas,supporting the decision-making process behind environmental management and hazard mitigation.展开更多
The Hyperspectral Infrared Atmospheric Sounder-II(HIRAS-II)onboard China’s FungYun(FY)-3F meteorological satellite was launched in August 2023.This study presents the first attempt to retrieve the global carbon monox...The Hyperspectral Infrared Atmospheric Sounder-II(HIRAS-II)onboard China’s FungYun(FY)-3F meteorological satellite was launched in August 2023.This study presents the first attempt to retrieve the global carbon monoxide(CO)column from HIRAS-II/FY-3F spectra based on a newly established full-physics algorithm.The CO global columns derived from the HIRAS-II/FY-3F satellite are compared to measurements from the Infrared Atmospheric Sounding Interferometer(IASI)onboard Europe’s MetopB satellite,as both satellites have the same spectral range with a similar overpass time.The correlation coefficient between the IASI/Metop-B and HIRAS-II/FY-3F CO retrievals is about 0.8.The HIRAS-II/FY-3F satellite can capture well the regions with high CO values,e.g.,Africa,North America,and East Asia.The relative difference in the CO global column between HIRAS-II and IASI is 1.2±13.7(1)%,which is within their combined retrieval uncertainty.The CO plumes from the fire emissions in North America between 18 and 23 July 2024 were observed by the HIRAS-II/FY-3F satellite and consistent with the CAMS(Copernicus Atmosphere Monitoring Service)model simulations.Our results show that the HIRAS-II/FY-3F spectra are of good enough quality to provide quantitative observations of global CO column remote sensing observations.展开更多
基金National Natural Science Foundation of China(42175022)。
文摘In the context of global warming, the increasing wildfire frequency has become a critical climate research focus in North America. This study used the Community Earth System Model(CESM 1.2) to investigate the impacts of 20thcentury wildfires on North American climate and hydrology. Summer represents the peak wildfire season in North America, with the Gulf of Mexico and Midwest regions experiencing the most severe effects. Wildfires not only damage vegetation during the fire season but also extend prolonged impacts into non-fire periods, showing distinct seasonal variations. In spring, wildfires increase surface albedo, triggering a cooling effect through enhanced snow cover and delayed snowmelt. Conversely, summer and autumn surface warming stems primarily from wildfire-suppressed vegetation transpiration. Warming near the Gulf of Mexico enhances moisture transport and precipitation, particularly in summer and autumn. Reduced evaporation and increased precipitation from the Gulf of Mexico significantly altered the hydrological cycle across North America, leading to increased runoff continent-wide.
文摘The primary objective of this paper is to present a comprehensive case study on monitoring wildfires in Nakhon Nayok, Thailand, utilizing Earth observation platforms. This initiative project has been undertaken by the Excellence Center of Space Technology and Research (ECSTAR), in partnership with its spin-off startup, TeroSpace. The study aims to provide an in-depth analysis of the wildfire incidents in the region, utilizing advanced technologies such as satellite imagery and data analytics, and to identify ways to improve future wildfire management. In particular, the paper focuses on the wildfires including thermal area comparison that ravaged the land in Nakhon Nayok Province in central Thailand from March to April 18th, 2023. To conduct this study, the ECSTAR-TeroSpace analytic team utilized satellite images from Earth observation platforms: MODIS and Sentinel-2A. By presenting this case study, this paper contributes to the broader understanding of how to monitor and manage wildfires in a changing climate. The findings of this study underscore the importance of proactive and collaborative efforts in mitigating the negative impacts of wildfires in Nakhon Nayok and other regions in Thailand.
文摘Fires play an essential part in the maintenance of the environment, but amplified fire activity often leads to adverse effects in the environment such as destruction of property and loss of life. Botswana has experienced wildfires that are caused by humans intentionally and unintentionally. Some of these wildfires grow into mega</span><span style="font-family:""> </span><span style="font-family:Verdana;">fires such as the 2008 wildfires. Data of wildfires reported in Botswana from the Department of Forestry and Range Resources and the frequency of occurrence was studied and analyzed. It shows the period of 2006-2017, Ghanzi and Ngamiland districts were mostly affected by wildfires. These districts have protected land such as the wildlife parks which may lead to </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">outbreak of natural wildfires that burns unnoticed due to minimal movements of people. The wildfires reported in each district show an increase over the years and this may affect the smooth running of operations.
基金supported by the National Natural Science Foundation of China (4157209042102223)+4 种基金China Postdoctoral Science Foundation (2021M6938442022T150284)the China Geological Survey Project (DD20160204-3)the discipline innovation team of Liaoning Technical University (LNTU20TD-05LNTU20TD-14)。
文摘The coal-bearing strata in the southern Junggar Basin in northwestern China have recently attracted the attention of coal geologists. Its abundance of coal resources is of great interest as there is a potential of unlocking details about the palaeoclimatic information. Coal deposits have the capacity to record wildfire events, even those with inefficient combustions. To characterize wildfire events and palaeoclimatic history of the Middle Jurassic Xishanyao Formation(Aalenian and Bajocian ages), 22 coal samples from borehole cores and coal mines in the southern Junggar Basin were collected and their macerals were analyzed. The results indicated that fusinite and semi-fusinite were the dominant components of inertinite with proportions of 35.27% and 54.67%, respectively. The presence of inertinite is an indicator that wildfires occurred at the time of peat land development, and the widespread occurrence suggests large scale wildfires during the Middle Jurassic. This study proposes a new parameter for the evaluation of wildfire features by combining burning frequency and burning temperature. The comprehensive evaluation index(CEI) was influenced by the lacustrine basin level and ancient plant types from a sequence framework. During the Middle Jurassic, most wildfires were surface fires with low level and ground fire with high level. High oxygen levels were estimated in the lower, middle, and upper members of the Xishanyao Formation with corresponding to 26.78%, 24.55%, and 23.55%, respectively. The high oxygen levels would be the primary cause of repeated wildfires in the Middle Jurassic. These results are helpful for understanding palaeoclimatic changes in the Middle Jurassic.
文摘Charcoal is abundant in most post-Silurian sedimentary sequences and even in some volcanic rocks. The study of charcoal can provide important information on not only what plants were being burned but also on how the charcoal residue was formed. Most charcoal encountered in the sedimentary record is a result of lightning-ignited wildfires but volcanic activity may also act as an ignition source. Charcoal preserves exquisite anatomical data that can be studied by a range of microscopical techniques including scanning electron microscopy that allows the identity of the plants to be determined. Fires have a major impact on a range of environments and ecosystems. The elevated oxygen content of the atmosphere indicates that the Cretaceous can be considered a "high-fire" world. Fire activity should be taken into account in Cretaceous vegetation and climate models. The occurrence of charcoal at the Cretaceous-Tertiary Boundary has been highlighted as evidence for a global fire following an asteroid impact, but this interpretation is questionable.Charcoal may be found within volcanic rocks, especially from deposits of pyroclastic flows and from basaltic lavas. This may provide data on the entombed vegetation but reflectance data may be used to provide interpretations of deposit temperatures. Charcoal is information-rich but yet is an under-utilized resource. Fire is an expression of life on Earth and an index of life's history and is relevant for geology, biology, human history, physics and global chemistry.
文摘The Santa Cruz Mountain range in northern California is a coastal landscape with a history of extensive forest logging and frequent large wildfires that have recently destroyed numerous residential structures at the wildland interface. Results from Landsat satellite image time-series analysis since 1984 of the study area within the Los Gatos Creek and Corralitos Creek watersheds showed that none of the severe drought periods since the 1980s have notably inhibited rapid tree and shrub regrowth rates on steep hill slopes burned recently by the 1985 Lexington Fire and the 2008 Summit Fire. In high burn severity areas of both fires, post-fire vegetation types showed a marked increase in shrub cover, mainly at the expense of evergreen tree cover. Most of these low (<3 m), dense stands of evergreen woody species have regenerated in as little as five years from bare charred ground. A combination of Landsat and Laser Altimeter (GLAS) satellite sensor data revealed that exposed south-facing slopes are presently supporting 200 to 240 Mg·ha<sup>-1</sup> of standing woody biomass on the burned areas. This study is the first of its kind to utilize a full 30-year record of Landsat vegetation index data to monitor tree and shrub regrowth after stand-replacing wildfires in California.
基金supported by a grant from Shahid Beheshti University。
文摘This study investigated the relationship between climate and biophysical variables in burned areas in Iran.The fire burned area(FBA)product(Fire CCI 5.1.1),land surface temperature(MOD11C3C),vegetation index(MOD13A1),and climate variables such as temperature,wind speed,relative humidity,and volumetric soil moisture from the ERA5 reanalysis dataset were used.Pearson correlation coefficient was used to determine the relationship between biophysical and climate variables and fire occurrence.The results show that FBA increased by 1.7 hectares/decade from 2001 to 2020.The high FBA in 2010(the black summer of Iran)was due to high temperatures and significant heatwaves that led to extensive wildfires.Although anthropogenic activities are considered a significant cause of wildfires,several variables,including increased temperatures,less precipitation,relative humidity,and wind speed and direction,contribute to the extent and occurrence of wildfires.The country’s FBA hotspot is in the Arasbaran region during the summer season.Temperature and relative humidity are the most significant variables influencing the occurrence of wildfires.The results show the vulnerability of Iran s forests and their high potential for fires.Considering the frequency of fire occurrences in Iran and the limited equipment,fire prevention plans should be carried out by applying proper management in high-risk regions.
文摘The relationship between climate change and wildfires was examined to summarize factors associated with vulnerability to wildfires. The complex and cyclic nature of interaction effects between the two was highlighted and the following conclusions were drawn. Climate change is leading to more frequent wildfires with higher intensity, resulting in release of more gasses and particulate matter that further exacerbates the progression of climate change. Direct and indirect impacts are detailed in the main body. A new fire management policy is deemed necessary, with a more local approach being recommended. Human impacts were found to further complicate the already complex relationship. It is recommended to treat accidental and incendiary fires separately for the purpose of evaluating fire management regimes. This requires successful advances in current fire investigation techniques.
文摘Rapid recovery of pioneer shrub and forest patch cover can reduce soil erosion, nutrient runoff and degradation of stream habitats, and promote small mammal and avian biodiversity following stand-replacing wildfires. Landsat imagery from the past 25+ years was analyzed to understand patterns and rates of vegetation recovery, focusing on high burn severity (HBS) patches, within wildfire areas dating from the late 1940s in the Sierra-Nevada region of California. Normalized difference vegetation index (NDVI) levels indicative of recovered woody cover within HBS areas were analyzed starting in 1985 to quantify regrowth of patch dynamics. Analysis of landscape metrics showed that the percentage of total HBS area comprised by the largest patch of recovered woody cover was relatively small in all fires that occurred since 1995, but increased rapidly with time since fire. Patch complexity of recovered woody cover decreased notably after more than 50 years of regrowth, but was not readily associated with time for fires that occurred since the mid 1990s. Patch complexity of dense woody cover was consistently high in fires after 1995 and increased with the elevation of HBS areas. The aggregation level of patches with recovery of woody cover increased steadily with time since fire. The study approach using satellite remote sensing can be expanded to assess the consequences of stand-replacing wildfires in all forests of the region.
基金The National Aeronautics and Space Administration provided funding(Grant NASA-NNX11AQ27A).
文摘Evaluated Weather Research and Forecasting model inline with chemistry (WRF/Chem) simulations of the 2009 Crazy Mountain Complex wildfire in Interior Alaska served as a testbed for typical Alaska wildfire-smoke conditions. A virtual unmanned air vehicle (UAV) sampled temperatures, dewpoint temperatures, primary inert and reactive gases and particular matter of different sizes as well as secondary pollutants from the WRF/Chem results using different sampling patterns, altitudes and speeds to investigate the impact of the sampling design on obtained mean distributions. In this experimental design, the WRF/Chem data served as the “grand truth” to assess the mean distributions from sampling. During frontal passage, the obtained mean distributions were sensitive to the flight patterns, speeds and heights. For inert constituents mean distributions from sampling agreed with the “grand truth” within a factor of two at 1000 m. Mean distributions of gases involved in photochemistry differed among flight patterns except for ozone. The diurnal cycle of these gases’ concentrations led to overestimation (underestimation) of 20 h means in areas of high (low) concentrations as compared to the “grand truth.” The mean ozone distribution was sensitive to the speed of the virtual UAV. Particulate matter showed the strongest sensitivity to the flight patterns, especially during precipitation.
文摘Years after wildfires burn forests and watersheds(分水岭)in the Western US,pollutants left behind continue to poison rivers and streams,and have existed for a longer time than scientists previously estimated.
基金supported by the National Natural Science Foundation of China(Nos.42077194,42061134008,and 42377098)the Shanghai International Science and Technology Partnership Project(China)(No.21230780200)the Shanghai General Project(China)(No.23ZR1406100).
文摘Wildfires burn approximately 3%-4% of the global land area annually,resulting in massive emissions of greenhouse gases and air pollutants.Over the past two decades,there has been a declining trend in both global burned area and wildfire emissions.This trend is largely attributed to a decrease in wildfire activity in Africa,which accounts for a substantial portion of the total burned area and emissions.However,the northern high-latitude regions of Asia and North America have witnessed substantial interannual variability in wildfire activity,with several severe events occurring in recent years.Climate plays a pivotal role in influencing wildfire activity and has led to more wildfires in high-latitude regions.These wildfires pose significant threats to climate,ecosystems,and human health.Given recent changes in wildfire patterns and their impacts,it is critical to understand the contributors of wildfires,focus on deteriorating high-latitude areas,and address health risks in poorly managed areas tomitigate wildfire effects.
基金This scientific publication took place within the framework of the project “Grant for Post-Doctoral Research” of the University of Thessaly, which is being implemented by the University of Thessaly and financed by the Stavros Niarchos Foundation
文摘Strongly affected by the escalating impacts of climate change,wildfires have been increasing in frequency and severity around the world.The primary aim of this study was the development of specific territorial measures—estimating the optimal locations of firefighting resources—to enhance the spatial resilience to wildfires in the fire-prone region of Chalkidiki Prefecture in northern Greece.These measures focus on the resistance to wildfires and the adaptation of strategies to wildfire management,based on the estimation of burn probability,including the effect of anthropogenic factors on fire ignition.The proposed location schemes of firefighting resources such as vehicles consider both the susceptibility to fire and the influence of the topography on travel simulation,highlighting the impact of road slope on the initial firefighting attack.The spatial scheme,as well as the number of required firefighting forces is totally differentiated due to slope impact.When we ignore the topography effect,a minimum number of fire vehicles is required to achieve the maximization of coverage(99.2%of the entire study area)giving priority to the most susceptible regions(that is,employing 18 of 24 available fire vehicles).But when we adopt more realistic conditions that integrate the slope effect with travel time,the model finds an optimal solution that requires more resources(that is,employing all 24 available fire vehicles)to maximize the coverage of the most vulnerable regions within 27 min.This process achieves 80%of total coverage.The proposed methodology is characterized by a high degree of flexibility,and provides optimized solutions to decision makers,while considering key factors that greatly affect the effectiveness of the initial firefighting attack.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.42472166, U24A20595, 42102127, 41972170)the Natural Science Foundation of Shandong Province (Grant No. ZR2021QD087)+2 种基金the Shandong Provincial Postdoctoral Science Foundation (SDCX-ZG-202203053)the Shandong University of Science and Technology (Grant No. 2018TDJH101)the Deep-Time Digital Earth program (DDE) for their support of this work
文摘The Carboniferous,an important coal-forming period in geological history,was characterized by extensive vegetation and high oxygen levels.Evidence suggests frequent wildfires took place during this time,especially in peatlands.However,the control mechanisms for changes in wildfire activity in peatlands during this period remain unclear.In this study,evidence from the Gzhelian in the Ordos Basin,such as the inertinite/vitrinite(Ⅰ/Ⅴ)ratio,indicated varying wildfire frequencies.Climate indicators(CaO/MgO and CaO/MgO·Al_(2)O_(3))revealed that high-frequency wildfires mainly occurred in warm and humid climates.Based on former age constraints,we deduced that orbital cycles(long eccentricity)controlled the climate influence on peatland wildfires during the Gzhelian.Higher eccentricity brought more sunshine and rainfall,creating warmer,wetter peatlands conducive to vegetation growth,which increased fuel loads and led to more wildfires.Global Gzhelian wildfire records show that wildfires occurred mainly in tropical regions with abundant vegetation,reinforcing the idea that fuel loads drove fire activity.While wildfires can release mercury(Hg),the frequent volcanic activity during this period likely contributed significantly to Hg enrichment.
基金funding provided by Universitàdegli Studi Mediterranea di Reggio Calabria within the CRUI-CARE Agreementfunded by Calabrian Region,grant number DDL n°16315657 del 13-12-2022,POR CALABRIA FESR-FSE 2014-2020 ASSE I-PROMOZIONE DELLA RICERCA 658 E DELL’INNOVAZIONE.
文摘Fires have historically played a natural role in shaping ecosystems,contributing to biodiversity and ecological renewal.However,in the Anthropocene,the interplay of climate change and human activities has exacerbated fire frequency and intensity,with cascading impacts on soil health,biodiversity,and ecosystem resilience.This study highlights the complex effects of fire on soil ecosystems,particularly in Mediterranean environments,by analysing the aftermath of the 2021 wildfire in Aspromonte National Park.The results of this research reveal the multifaceted impact of fire on soil composition and biological activity.Burned areas exhibited altered microbial communities,characterized by a higher biomass of bacteria and actinomycetes but reduced fungal presence,aligning with findings that fungi are more sensitive to heat than other microorganisms,particularly under moist conditions.Changes in enzyme activity,such as decreased oxidoreductase and hydrolase activities but elevated catalase activity,suggest significant metabolic adjustments among surviving microbial strains.Additionally,increased potassium,magnesium,sulphates,and total phenols in burned areas point to shifts in nutrient dynamics driven by the combustion of organic matter.Fire also impacted microarthropod communities but the rapid recovery of microarthropod communities that has been recognized by numerous authors suggests that fire may not universally impair soil biodiversity in Mediterranean environments.The transition zone played a critical intermediate role,retaining a higher organic matter content than the unburned zone,suggesting its potential as a buffer or recovery zone in post-fire dynamics.Microarthropod communities,while initially affected,demonstrated resilience in line with previous research,indicating that Mediterranean soils might possess adaptive mechanisms to recover from low-to moderate-severity wildfires.Importantly,the incorporation of ashes and partially burned organic material in such fires may lead to enhanced soil fertility,fostering bacterial and actinomycetes proliferation and facilitating ecosystem recovery.
基金jointly supported by the National Key Research and Development Program of China[grant number 2023YFF0805402]the National Natural Science Foundation of China[grant number42405107]+1 种基金the Natural Science Foundation of Jiangsu Province[grant number BK20240715]the Jiangsu Funding Program for Excellent Postdoctoral Talent[grant number 2023ZB113]。
文摘The El Niño-Southern Oscillation(ENSO)is a key driver of global climate variability,profoundly influencing regional fire activities and associated pollutant emissions.This study investigates the impacts of ENSO on global fire emissions and fire-induced PM_(2.5)concentrations in 2000-2023.During El Niño events,global fire emissions increase by 5.9%-20.0%with regional hotspots in Indonesia,North America,and Australia,driven by anomalous warming and rainfall deficits.In contrast,La Niña events result in a 3.2%-9.9%reduction in global fire emissions,with regional variability depending on the fire inventories used.In response,fire-induced PM_(2.5)concentrations increase substantially during El Niño,rising by 27.5%-71.0%in Indonesia,49.2%-116.5%in North America,and 17.5%-42.6%in Australia.Conversely,La Niña events lead to decreases of 26.6%-52.5%,19.4%-37.3%,14.5%-24.4%in these regions,respectively.These findings highlight the critical role of ENSO in shaping fire emissions and air pollution from regional to global scales,providing valuable insights for mitigating the impacts of climatic extremes on air quality.
基金funded by the National Natural Science Foundation of China(NSFC No.52322610)Hong Kong Research Grants Council Theme-based Research Scheme(T22-505/19-N).
文摘Effective wildland fire management requires real-time access to comprehensive and distilled information from different data sources.The Digital Twin technology becomes a promising tool in optimizing the processes of wildfire pre-vention,monitoring,disaster response,and post-fire recovery.This review examines the potential utility of Digital Twin in wildfire management and aims to inspire further exploration and experimentation by researchers and practitioners in the fields of environment,forestry,fire ecology,and firefighting services.By creating virtual replicas of wildfire in the physical world,a Digital Twin platform facilitates data integration from multiple sources,such as remote sensing,weather forecast-ing,and ground-based sensors,providing a holistic view of emergency response and decision-making.Furthermore,Digital Twin can support simulation-based training and scenario testing for prescribed fire planning and firefighting to improve preparedness and response to evacuation and rescue.Successful applications of Digital Twin in wildfire management require horizontal collaboration among researchers,practitioners,and stakeholders,as well as enhanced resource sharing and data exchange.This review seeks a deeper understanding of future wildland fire management from a technological perspective and inspiration of future research and implementation.Further research should focus on refining and validating Digital Twin models and the integration into existing fire management operations,and then demonstrating them in real wildland fires.
基金funding enabled and organized by CAUL and its Member Institutions.
文摘The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There is a need to evaluate and enhance wildfire prediction methods,focusing on their application during extended periods of intense heat and drought.This study reviews various wildfire modelling approaches,including traditional physical,semi-empirical,numerical,and emerging machine learning(ML)-based models.We critically assess these models’capabilities in predicting fire susceptibility and post-ignition spread,highlighting their strengths and limitations.Our findings indicate that while traditional models provide foundational insights,they often fall short in dynamically estimating parameters and predicting ignition events.Cellular automata models,despite their potential,face challenges in data integration and computational demands.Conversely,ML models demonstrate superior efficiency and accuracy by leveraging diverse datasets,though they encounter interpretability issues.This review recommends hybrid modelling approaches that integrate multiple methods to harness their combined strengths.By incorporating data assimilation techniques with dynamic forecasting models,the predictive capabilities of ML-based predictions can be significantly enhanced.This review underscores the necessity for continued refinement of these models to ensure their reliability in real-world applications,ultimately contributing to more effective wildfire mitigation and management strategies.Future research should focus on improving hybrid models and exploring new data integration methods to advance predictive capabilities.
基金the National Natural Science Foundation of China(42377170,42407212)the National Funded Postdoctoral Researcher Program(GZB20230606)+3 种基金the Postdoctoral Research Foundation of China(2024M752679)the Sichuan Natural Science Foundation(2025ZNSFSC1205)the National Key R&D Program of China(2022YFC3005704)the Sichuan Province Science and Technology Support Program(2024NSFSC0100)。
文摘Wildfires significantly disrupt the physical and hydrologic conditions of the environment,leading to vegetation loss and altered surface geo-material properties.These complex dynamics promote post-fire gully erosion,yet the key conditioning factors(e.g.,topography,hydrology)remain insufficiently understood.This study proposes a novel artificial intelligence(AI)framework that integrates four machine learning(ML)models with Shapley Additive Explanations(SHAP)method,offering a hierarchical perspective from global to local on the dominant factors controlling gully distribution in wildfireaffected areas.In a case study of Xiangjiao catchment burned on March 28,2020,in Muli County in Sichuan Province of Southwest China,we derived 21 geoenvironmental factors to assess the susceptibility of post-fire gully erosion using logistic regression(LR),support vector machine(SVM),random forest(RF),and convolutional neural network(CNN)models.SHAP-based model interpretation revealed eight key conditioning factors:topographic position index(TPI),topographic wetness index(TWI),distance to stream,mean annual precipitation,differenced normalized burn ratio(d NBR),land use/cover,soil type,and distance to road.Comparative model evaluation demonstrated that reduced-variable models incorporating these dominant factors achieved accuracy comparable to that of the initial-variable models,with AUC values exceeding 0.868 across all ML algorithms.These findings provide critical insights into gully erosion behavior in wildfire-affected areas,supporting the decision-making process behind environmental management and hazard mitigation.
基金supported by the FengYun Application Pioneering Project (Grant No. FY-APP-2022.0502)the National Natural Science Foundation of China (42205140)the State Key Laboratory of Atmospheric Environment end Extreme Meteorology (Grant No. 2024QN04)
文摘The Hyperspectral Infrared Atmospheric Sounder-II(HIRAS-II)onboard China’s FungYun(FY)-3F meteorological satellite was launched in August 2023.This study presents the first attempt to retrieve the global carbon monoxide(CO)column from HIRAS-II/FY-3F spectra based on a newly established full-physics algorithm.The CO global columns derived from the HIRAS-II/FY-3F satellite are compared to measurements from the Infrared Atmospheric Sounding Interferometer(IASI)onboard Europe’s MetopB satellite,as both satellites have the same spectral range with a similar overpass time.The correlation coefficient between the IASI/Metop-B and HIRAS-II/FY-3F CO retrievals is about 0.8.The HIRAS-II/FY-3F satellite can capture well the regions with high CO values,e.g.,Africa,North America,and East Asia.The relative difference in the CO global column between HIRAS-II and IASI is 1.2±13.7(1)%,which is within their combined retrieval uncertainty.The CO plumes from the fire emissions in North America between 18 and 23 July 2024 were observed by the HIRAS-II/FY-3F satellite and consistent with the CAMS(Copernicus Atmosphere Monitoring Service)model simulations.Our results show that the HIRAS-II/FY-3F spectra are of good enough quality to provide quantitative observations of global CO column remote sensing observations.