期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Wigs to Wealth
1
作者 Yuan Yuan 《Beijing Review》 2025年第19期38-39,共2页
Yu Gaohua,in his early 40s,frequently travels across China to collect human hair.Each trip lasts about half a month,after which he returns to his hometown to sell what he has collected.His hometown,Juancheng County in... Yu Gaohua,in his early 40s,frequently travels across China to collect human hair.Each trip lasts about half a month,after which he returns to his hometown to sell what he has collected.His hometown,Juancheng County in Shandong's Heze City,is nationally famous for its wig industry,hosting over 20 openair hair trading fairs each month. 展开更多
关键词 Juancheng County TRADING WEALTH wigs China Heze City human hair collect human haireach
原文传递
Automated Bionic Wig Weaving Process Design and Weaving Path Planning
2
作者 LYU Hongzhan YOU Jia +2 位作者 LI Junjie LU Licheng SUN Zhihong 《Journal of Donghua University(English Edition)》 2025年第5期550-557,共8页
The traditional production of bionic wigs through manual weaving is a complex process characterized by high labor intensity,making automation challenging.To address this issue,an automated weaving process for bionic w... The traditional production of bionic wigs through manual weaving is a complex process characterized by high labor intensity,making automation challenging.To address this issue,an automated weaving process for bionic wigs is proposed and the design of an automated bionic wig weaving machine is presented based on an analysis of manual weaving principles and processes.Furthermore,according to the characteristics of the weaving machine and the distribution pattern of weaving nodes,the minimum weaving duration of a single hairnet is taken as the optimization goal,and a continuous weaving path planning for the weaving process of the mixed scheme is conducted.The weaving duration for various weaving paths are calculated and compared,and the results indicate that the duration of the S-shaped weaving path is always the shortest in different weaving regions.The designed automated weaving process and the weaving path planning provide a theoretical foundation and experimental data for achieving automated weaving of bionic wigs. 展开更多
关键词 bionic wig weaving process wig weaving machine path planning
在线阅读 下载PDF
Optimization of High-Speed WIG Airfoil with Consideration of Non-ground Effect by a Two-Step Deep Learning Inverse Design Method
3
作者 WANG Chenlu SUN Jianhong +4 位作者 ZHENG Daren SUN Zhi ZUO Si LIU Hao LI Pei 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期56-69,共14页
Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of hi... Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of high-speed WIG airfoil considering non-ground effect is carried out by a novel two-step inverse airfoil design method that combines conditional generative adversarial network(CGAN)and artificial neural network(ANN).The CGAN model is employed to generate a variety of airfoil designs that satisfy the desired lift-drag ratios in both ground effect and non-ground effect conditions.Subsequently,the ANN model is utilized to forecast aerodynamic parameters of the generated airfoils.The results indicate that the CGAN model contributes to a high accuracy rate for airfoil design and enables the creation of novel airfoil designs.Furthermore,it demonstrates high accuracy in predicting aerodynamic parameters of these airfoils due to the ANN model.This method eliminates the necessity for numerical simulations and experimental testing through the design procedure,showcasing notable efficiency.The analysis of airfoils generated by the CGAN model shows that airfoils exhibiting high lift-drag ratios under both flight conditions typically have cambers of among[0.08c,0.105c],with the positions of maximum camber occurring among[0.35c,0.5c]of the chord length,and the leading-edge radiuses of these airfoils primarily cluster among[0.008c,0.025c] 展开更多
关键词 conditional generative adversarial network(CGAN) artificial neural network(ANN) airfoil design wing-in-ground(WIG)aircraft ground effect
在线阅读 下载PDF
Numerical Simulation of Seaplane Wave Ground Effect with Crosswind 被引量:3
4
作者 LI Yanghui FU Xiaoqin +1 位作者 CHEN Jichang TONG Mingbo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期1-9,共9页
Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristic... Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristics of large seaplane flying with the ground-effect above wavy surface. The velocity inlet wave-making method and the volume of fluid model are used to accurately simulate the linear regular waves and to precisely capture the free surface. This paper studies the influence of the sideslip angle on the aerodynamic characteristics of large seaplane when it is cruising above wavy water. The results show that the wave surface mainly affects the pressure distribution on the lower surface of the wing. When the sideslip angle varies from 0° to 8°,the varying of frequency of aerodynamic forces is consistent with the wave encounter frequency,and both periods are 0.6 s. With the increase of the sideslip angle,the lift coefficient and the pitching moment coefficient decrease. However,when the sideslip angle is smaller than 4°,the decrease amplitude is small,and the significant decrease occurs above 4° and during the whole process of the change of sideslip angle,the aerodynamic fluctuation amplitude is almost unchanged. As the drag coefficient increases with the increase of sideslip angle,significant increase also occurs when the value is greater than4°,and the fluctuation amplitude does not show any correlations. The rolling moment coefficient and yaw moment coefficient increase with the increase of the sideslip angle,and the fluctuation amplitudes of both increase linearly with the increase of the sideslip angle. 展开更多
关键词 two-phase flow wing-in-ground(WIG)effect volume of fluid(VOF)model velocity-inlet boundary wave maker
在线阅读 下载PDF
The future and technique challenges of high-speed ground effect vehicle enrolled in maritime transportation 被引量:4
5
作者 Jianhong Sun Chenlu Wang +5 位作者 Daren Zheng Zhi Sun Hao Liu Zhuoran Sheng Shengrun Zhang Weidong Zhao 《Aerospace Traffic and Safety》 2024年第1期43-54,共12页
This paper presents a high-speed ground effect vehicle(HS-GEV)used specifically for maritime transportation.Given the limitations of current vessels,including various types of watercraft and high-speed boats,in fulfil... This paper presents a high-speed ground effect vehicle(HS-GEV)used specifically for maritime transportation.Given the limitations of current vessels,including various types of watercraft and high-speed boats,in fulfilling of needs in different maritime transportation scenarios,the HS-GEV emerges as a promising solution to address unmet requirements.To efficiently accomplish maritime transportation missions with quickness and safety,several critical features are emphasized,including short take-off on water,flight maneuverability and flight stability.The key techniques required to achieve these features,as well as recent progress highlights,are introduced.Following and promoting these crucial techniques is also suggested as a future step to improve HS-GEV performance.With its predominant features,the HS-GEV holds immense application value in enhancing a high-speed maritime transportation system that aligns with the evolving needs of the real world. 展开更多
关键词 HS-GEV Maritime Transportation Drag Reduction Combined Power Wing-in-Ground(WIG)Effect Ground Effect Vehicle(GEV)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部