With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s...With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.展开更多
In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequen...In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.展开更多
This study proposes a novel visual maintenance method for photovoltaic(PV)modules based on a two-stage Wiener degradation model,addressing the limitations of traditional PV maintenance strategies that often result in ...This study proposes a novel visual maintenance method for photovoltaic(PV)modules based on a two-stage Wiener degradation model,addressing the limitations of traditional PV maintenance strategies that often result in insufficient or excessive maintenance.The approach begins by constructing a two-stage Wiener process performance degradation model and a remaining life prediction model under perfect maintenance conditions using historical degradation data of PV modules.This enables accurate determination of the optimal timing for postfailure corrective maintenance.To optimize the maintenance strategy,the study establishes a comprehensive cost model aimed at minimizing the long-term average cost rate.The model considers multiple cost factors,including inspection costs,preventive maintenance costs,restorative maintenance costs,and penalty costs associated with delayed fault detection.Through this optimization framework,the method determines both the optimal maintenance threshold and the ideal timing for predictive maintenance actions.Comparative analysis demonstrates that the twostage Wiener model provides superior fitting performance compared to conventional linear and nonlinear degradation models.When evaluated against traditional maintenance approaches,including Wiener process-based corrective maintenance strategies and static periodic maintenance strategies,the proposed method demonstrates significant advantages in reducing overall operational costs while extending the effective service life of PV components.The method achieves these improvements through effective coordination between reliability optimization and economic benefit maximization,leading to enhanced power generation performance.These results indicate that the proposed approach offers a more balanced and efficient solution for PV system maintenance.展开更多
基金funded by scientific research projects under Grant JY2024B011.
文摘With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.
文摘针对传统的线性模型不足以描述分解炉复杂系统的问题,结合垃圾协同处置的背景,研究了一种基于极限学习机(extreme learning machine,ELM)的MISO Hammerstein-Wiener(multiple-input single-output Hammerstein-Wiener)模型分解炉温度建模及预测控制方法,用以实现分解炉温度的稳定控制。模型以喂煤量和垃圾衍生燃料流量(refuse derived fuel,RDF)为输入、分解炉温度为输出,并且采用ELM拟合非线性环节,ARMAX(autoregressive moving average with extra input)模型来描述动态线性环节,递推最小二乘法辨识出模型混合参数,奇异值分解得到模型的参数估计。分解炉控制方法采用两步法预测控制。首先,建立非线性环节逆模型;其次,采用广义预测控制算法得到中间变量;最后,中间变量经过非线性环节逆模型输出得到模型的控制量。仿真实验表明,ELM的引入提高了模型的拟合精度。与传统的预测控制相比,所提的控制方法稳定性更强、跟随性更好。
基金Supported by the National Natural Science Foundation of China(12301101)the Guangdong Basic and Applied Basic Research Foundation(2022A1515110019 and 2020A1515110585)。
文摘In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘This study proposes a novel visual maintenance method for photovoltaic(PV)modules based on a two-stage Wiener degradation model,addressing the limitations of traditional PV maintenance strategies that often result in insufficient or excessive maintenance.The approach begins by constructing a two-stage Wiener process performance degradation model and a remaining life prediction model under perfect maintenance conditions using historical degradation data of PV modules.This enables accurate determination of the optimal timing for postfailure corrective maintenance.To optimize the maintenance strategy,the study establishes a comprehensive cost model aimed at minimizing the long-term average cost rate.The model considers multiple cost factors,including inspection costs,preventive maintenance costs,restorative maintenance costs,and penalty costs associated with delayed fault detection.Through this optimization framework,the method determines both the optimal maintenance threshold and the ideal timing for predictive maintenance actions.Comparative analysis demonstrates that the twostage Wiener model provides superior fitting performance compared to conventional linear and nonlinear degradation models.When evaluated against traditional maintenance approaches,including Wiener process-based corrective maintenance strategies and static periodic maintenance strategies,the proposed method demonstrates significant advantages in reducing overall operational costs while extending the effective service life of PV components.The method achieves these improvements through effective coordination between reliability optimization and economic benefit maximization,leading to enhanced power generation performance.These results indicate that the proposed approach offers a more balanced and efficient solution for PV system maintenance.