In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads th...In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.展开更多
A wideband low-profile aperture-coupled antenna based on a novel dual-mode-composite scheme is presented.The mode-composite scheme where the TM10 cavity mode and the TE121 dielec-tric resonator(DR)mode are combined of...A wideband low-profile aperture-coupled antenna based on a novel dual-mode-composite scheme is presented.The mode-composite scheme where the TM10 cavity mode and the TE121 dielec-tric resonator(DR)mode are combined offers an ap-proach to obtain a wide bandwidth accompanied by stable unidirectional radiation and high efficiency.The use of a lengthened coupling aperture that supports the one-wavelength resonance in the band of interest is an effective feed method of simultaneously excit-ing the two composite modes without compromising the increased complexity of the antenna geometry.An impedance bandwidth of 49%for|S_(11)|of less than-10 dB,a maximum gain of 10.8 dBi,and stable radiation patterns with low cross-polarization are realized ex-perimentally by a fabricated prototype.Considering the simplicity of the geometry,the wide bandwidth that can cover n77,n78,and n79 bands for the fifth generation(5G)mobile communications and the sat-isfying radiation performance,the proposed antenna would be a promising candidate for advanced wireless applications.展开更多
In this paper,a 4×4 wideband linearly po-larization(LP)antenna array is proposed by using pla-nar dual-arm spiral structures.Wideband balun struc-tures,composed of microstrip line-fed coupling slots,are adopted t...In this paper,a 4×4 wideband linearly po-larization(LP)antenna array is proposed by using pla-nar dual-arm spiral structures.Wideband balun struc-tures,composed of microstrip line-fed coupling slots,are adopted to feed two dual-arms spiral structures with opposite phases.Then,by combining the left-and right-hand circular polarizations,a linearly polar-ization is achieved.The proposed antenna has a wide operating bandwidth due to the wideband nature of the spiral structure.Simulated results show that the an-tenna element can achieve a 68.73%impedance band-width and a maximum gain of 6.64 dBi within 19.44–38.83 GHz.A 4×4 array prototype is designed to verify the concept.Measured results show that an impedance bandwidth of 63.73%is obtained.The pro-posed array has the merits of a wide bandwidth,a low profile,a low cost,and a small size,which is promis-ing for the application in millimeter wave wireless sys-tems.展开更多
A thin compact broadband coplanarfed rectangular-ring monopole antenna parasiticallyloaded by three nested concentric rectangle rings and aπ-shaped stub is proposed suitable for modern communication needs.It has an o...A thin compact broadband coplanarfed rectangular-ring monopole antenna parasiticallyloaded by three nested concentric rectangle rings and aπ-shaped stub is proposed suitable for modern communication needs.It has an overall area of only 25 mm×6 mm(0.29λ_(0)×0.07λ_(0)at 3.5 GHz),which can be the base radiating element of the MIMO array,being easily integrated into any wireless device.Its measured(simulated)fractional bandwidth is 24.6%(31.6%)ranging from 3.25(3.09)to 4.16(4.25)GHz,being applicable to the 5G N48,N77,and N78 bands.Practical guidelines are also provided to make the proposed design operate on some other additional 5G bands(e.g.,N41 or N46)without compromising its overall size.As far as the radiation properties are concerned,the antenna with such small dimensions radiates nearly bidirectionally and omnidirectionally in the E-and H-plane,respectively,and has an average measured(simulated)peak realized gain of-0.1(1.8)dBi over the band of interest.The proposed antenna is wideband,physically small and relatively easy to manufacture,making it straightforward to integrate with the RF electronics in IoT sensors.展开更多
Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This pap...Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This paper proposes a processing technique for enhanced accuracy of target angle estimates for wideband monopulse radars.Firstly,to accumulate the energy of the received echo signals from different scatterers on a target,the phase difference between different scatterers on a target is estimated using the minimum entropy phase estimation method combining with the correlation between adjacent pulses.Then,the monopulse ratio is obtained by using the signals from the accumulated sum and difference channels.The target angle is estimated by weighting the accumulated echo energy for accu-racy enhancement.Experimental results based on both numeri-cal simulation and measured data are presented to validate the effectiveness of the proposed technique.展开更多
In this paper,a novel wideband 8-element multiple-input and multiple-output(MIMO)antenna based on Booker’s relation is proposed for the fifth generation(5G)handset applications.The 8 antenna elements are arranged sym...In this paper,a novel wideband 8-element multiple-input and multiple-output(MIMO)antenna based on Booker’s relation is proposed for the fifth generation(5G)handset applications.The 8 antenna elements are arranged symmetrically along the two longer vertical side-edge frames of the handset.Each antenna element is composed of a monopole and a slot radiation structure,in which wideband characteristic covering 3140-5620MHz can be obtained.Note that the L-shaped monopole and the slot can be deemed as complementary counterparts approximatively.Furthermore,the Z-parameter of the proposed wideband antenna element is equivalent to the shunt impedance of monopole as well as slot radiator.Based on Booker’s relation,the wideband input impedance characteristic is therein achieved compared with conventional wideband technique such as multiresonance.Four L-shaped stubs as well as two slots etched on the ground plane are utilized to achieve acceptable isolation performance better than 13 dB,with total efficiency higher than 60%and envelope correlation coefficients(ECCs)lower than 0.1.The proposed antenna scheme can be a good candidate for 5G handset applications with the advantages of wideband,simple structure,high efficiency,and acceptable isolation performance.Also,the scheme might be a rewarding attempt to promote the Booker’s relation in the application of 5G terminal MIMO antenna designs.展开更多
In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the i...In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.展开更多
A Ka-band wideband microstrip-to-microstrip(MS-to-MS)vialess vertical transition on slotline multimode resonator(MMR)is presented.The proposed transition mainly consists of a slotline MMR on the common ground plane,an...A Ka-band wideband microstrip-to-microstrip(MS-to-MS)vialess vertical transition on slotline multimode resonator(MMR)is presented.The proposed transition mainly consists of a slotline MMR on the common ground plane,and two microstrip(MS)lines facing each other at the top and third layers in the four-layered liquid crystal polymer(LCP)substrate.In order to improve the bandwidth of the proposed transition,a U-shaped branch is added to the top-and third-layer MS lines,separately.The slotline MMR can be properly excited by setting the position of the U-shaped branch line.As such,a three-pole wideband vertical transition is obtained,which shows a good transmission performance over a wide frequency range of 29.27-39.95 GHz.The three-pole wideband vertical transition based on multilayer LCP substrate is designed,fabricated,and measured.Test results indicate that a wide frequency range of 26.8436.26 GHz can be obtained with return loss better than-10dB and insertion loss less than-3dB.展开更多
According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of dir...According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of direction finding with interferometer for wideband signals and multiple signals scene,a frequency domain phase interferometer is proposed and the concrete implementation scheme is given.The proposed method computes the phase difference in frequency domain,and finds multi-target results with judging the spectrum amplitude changing,and uses the frequency phase difference to compute the arrival angle.Theoretical analysis and simulation results show that the proposed method effectively solves the problem of the angle estimation with phase interferometer for wideband signals,and has good performance in multiple signals scene with nonoverlapping spectrum or partially overlapping.In addition,the wider the signal bandwidth,the better direction finding performance of this algorithm.展开更多
This paper presents a miniaturized wideband high-gain microstrip end-fire antenna specifically designed for 5G-R communication applications.The antenna structure comprises a microstrip folded dipole resonator and end-...This paper presents a miniaturized wideband high-gain microstrip end-fire antenna specifically designed for 5G-R communication applications.The antenna structure comprises a microstrip folded dipole resonator and end-fire directing units.By employing Intercalated Coupling Structures(ICS)between the folded dipole resonator and the ground plane,the resonant frequency of the antenna is shifted to lower frequencies,thereby significantly enhancing the operational bandwidth.Furthermore,the inclusion of three end-fire directing units positioned in front of the folded dipole oscillator substantially improves the antenna's end-fire gain.The designed antenna exhibits a relative impedance bandwidth of 46%(ranging from 1.36 to 2.18 GHz),with a peak gain of 7.33 dBi at the 2100 MHz 5G-R frequency band.The overall dimensions of the antenna are 0.31λ_(L)×0.39λ_(L)×0.008λ_(L),whereλ_(L)denotes the wavelength at the lowest frequency.The proposed antenna demonstrates a broad operational bandwidth,rendering it suitable for 5G-R mobile communications.展开更多
Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spec...Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.展开更多
In mmWave massive multiple-input multiple-output(MIMO)communication systems,the extension of low-complexity narrowband precoding schemes to be operated on wideband systems under frequency-selective channels remains an...In mmWave massive multiple-input multiple-output(MIMO)communication systems,the extension of low-complexity narrowband precoding schemes to be operated on wideband systems under frequency-selective channels remains an important challenge at the current time.This paper investigates a low complexity wideband hybrid precoding scheme for mmWave massive MIMO multicarrier systems under a single-user,fully-connected hybrid architecture.We show that the radio frequency(RF)precoding/combining vectors can be directly derived from the eigenvectors of the optimal fully-digital covariance matrix over all subcarriers in order to maximize the sum rate of spectral efficiency.We also suggest a new method that iteratively reduces the residual error between the covariance matrix and the sum of products of precoding matrices over all the subcarriers to improve the performance in the case where the number of RF chains is higher than the number of streams.The results of the simulation show that the proposed schemes’complexity is low compared to the present methods,and their performance can almost reach the upper bound achieved by the optimal full-baseband design.展开更多
We present preliminary investigations of a potential optics system for wideband X-ray telescopes.The optical design adopts the conical approximation of the Wolter-I configuration and a combination of multilayer coatin...We present preliminary investigations of a potential optics system for wideband X-ray telescopes.The optical design adopts the conical approximation of the Wolter-I configuration and a combination of multilayer coatings and silicon pore optics.The total number of mirror modules is 79,distributed in 8 rows with the radii at the intersection plane between 250 mm and 500 mm.The optimization of the total effective area using the figure of merits method suggests that the focal length is 30 m and the mirror coating is a combination of the W/Si and Pt/C multilayers.This fulfills the on-axis effective area requirements of 2000 cm^(2) at 10 keV and 300 cm^(2) at 60 keV and provides a broad energy response between 3 keV and 78.4 keV.With the current geometry and coating compositions,we implement a mass modeling of the telescope in Geant4 to predict mirror performances via the ray-tracing algorithm,including the angular resolution and effective area.With the presumed metrological data as input,this can provide precision and finishing requirements for the manufacture of optics.This work demonstrates the feasibility of combining multilayer coatings and silicon pore optics for potential use in wideband X-ray telescopes and advances the development and progress of such missions.展开更多
A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz abso...A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.展开更多
A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz cente...A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz center frequency with an associated gain of 8.5dB and a gain flatness of + /- 0.6dB in the 4-12GHz frequency range.展开更多
A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to ex...A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to extend the frequency tuning range, and the phase noise is optimized in the design procedure. The functional relationships between the phase noise and the transistors' width-length ratios are deduced by a linear time variant (LTV) model. The theoretical optimized parameter value ranges are determined. To simplify the calculation, the working region is split into several sub-ranges according to transistor working conditions. Thus, a lot of integrations are avoided, and the phase noise function upon the design variables can be expressed as simple proportion formats. Test results show that the DC current is 8.8 mA under a voltage supply of 1.8 V; the frequency range is 1.17 to 1.90 GHz, and the phase noise reaches - 83 dBc/Hz at a 10 kHz offset from the carrier. The chip size is 1. 2 mm × 0. 9 mm.展开更多
This paper presents a VHF CMOS VCO. The most significant improvement on the VCO is that the cross-coupled MOSFET pairs are divided into several switchable parts so the characteristics can compensate the state change t...This paper presents a VHF CMOS VCO. The most significant improvement on the VCO is that the cross-coupled MOSFET pairs are divided into several switchable parts so the characteristics can compensate the state change that results from the frequency tuning of the oscillator. This VCO is implemented in 0, 18μm CMOS with a core area of about 550μm × 700μm. The test results show that the tuning range covers 31-111MHz with a power consumption between 0.3-6. 9mW and a phase noise at a 100kHz offset of about - 110dBc/Hz.展开更多
In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when ...In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when the bandwidth of wideband digital receiver increases,which both decrease the wideband radar signal detection performance,a new wideband digital receiver based on the modulated wideband converter(MWC)discrete compressed sampling structure and an energy detection method based on the new receiver are proposed.Firstly,the proposed receiver utilizes periodic pseudo-random sequences to mix wideband signals with baseband and other sub-bands.Then the mixed signals are low-pass filtered and downsampled to obtain the baseband compressed sampling data,which can increase the sensitivity of the system.Meanwhile,the cross-channel signal will all appear in any subbands,so the cross-channel signal problem can be solved easily by processing the baseband compressed sampling data.Secondly,we establish the signal detection model and formulate the criterion of the energy detection method.And we directly utilize the baseband compressed sampling data to carry out signal detection without signal reconstruction,which decreases the complexity of the algorithm and reduces the computational burden.Finally,simulation experiments demonstrate the effectiveness of the proposed receiver and show that the proposed signal detection method is effective in low signal-to-noise ratio(SNR)compared with the conventional energy detection and the probability of detection increases significantly when SNR increases.展开更多
This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief histo...This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief history of the ultrawideband antennas is first provided. Several types of planar antennas for UWB systems with band-notched designs are reviewed. Special SWB planar antenna designs with the bandwidth ratio greater than 10:1 including metal-plate and printed monopole antennas and tapered slot antennas are presented and compared.展开更多
The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to...The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.展开更多
基金Supported by the National Natural Science Foundation of China(61971401)。
文摘In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.
基金supported in part by the Beijing Natural Science Foundation No.JQ22011the National Science Foundation of China for Distinguished Young Scholars under Grant No.62325102+1 种基金the National Natural Science Foundation of China under Grant No.62031004the Fundamental Research Funds for the Central Universities No.2023YJS160.
文摘A wideband low-profile aperture-coupled antenna based on a novel dual-mode-composite scheme is presented.The mode-composite scheme where the TM10 cavity mode and the TE121 dielec-tric resonator(DR)mode are combined offers an ap-proach to obtain a wide bandwidth accompanied by stable unidirectional radiation and high efficiency.The use of a lengthened coupling aperture that supports the one-wavelength resonance in the band of interest is an effective feed method of simultaneously excit-ing the two composite modes without compromising the increased complexity of the antenna geometry.An impedance bandwidth of 49%for|S_(11)|of less than-10 dB,a maximum gain of 10.8 dBi,and stable radiation patterns with low cross-polarization are realized ex-perimentally by a fabricated prototype.Considering the simplicity of the geometry,the wide bandwidth that can cover n77,n78,and n79 bands for the fifth generation(5G)mobile communications and the sat-isfying radiation performance,the proposed antenna would be a promising candidate for advanced wireless applications.
基金supported in part by the National Natural Science Foundation of China under Grant 62131008the Fundamental Research Funds for the Central Universities 2242022k60003.
文摘In this paper,a 4×4 wideband linearly po-larization(LP)antenna array is proposed by using pla-nar dual-arm spiral structures.Wideband balun struc-tures,composed of microstrip line-fed coupling slots,are adopted to feed two dual-arms spiral structures with opposite phases.Then,by combining the left-and right-hand circular polarizations,a linearly polar-ization is achieved.The proposed antenna has a wide operating bandwidth due to the wideband nature of the spiral structure.Simulated results show that the an-tenna element can achieve a 68.73%impedance band-width and a maximum gain of 6.64 dBi within 19.44–38.83 GHz.A 4×4 array prototype is designed to verify the concept.Measured results show that an impedance bandwidth of 63.73%is obtained.The pro-posed array has the merits of a wide bandwidth,a low profile,a low cost,and a small size,which is promis-ing for the application in millimeter wave wireless sys-tems.
文摘A thin compact broadband coplanarfed rectangular-ring monopole antenna parasiticallyloaded by three nested concentric rectangle rings and aπ-shaped stub is proposed suitable for modern communication needs.It has an overall area of only 25 mm×6 mm(0.29λ_(0)×0.07λ_(0)at 3.5 GHz),which can be the base radiating element of the MIMO array,being easily integrated into any wireless device.Its measured(simulated)fractional bandwidth is 24.6%(31.6%)ranging from 3.25(3.09)to 4.16(4.25)GHz,being applicable to the 5G N48,N77,and N78 bands.Practical guidelines are also provided to make the proposed design operate on some other additional 5G bands(e.g.,N41 or N46)without compromising its overall size.As far as the radiation properties are concerned,the antenna with such small dimensions radiates nearly bidirectionally and omnidirectionally in the E-and H-plane,respectively,and has an average measured(simulated)peak realized gain of-0.1(1.8)dBi over the band of interest.The proposed antenna is wideband,physically small and relatively easy to manufacture,making it straightforward to integrate with the RF electronics in IoT sensors.
文摘Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This paper proposes a processing technique for enhanced accuracy of target angle estimates for wideband monopulse radars.Firstly,to accumulate the energy of the received echo signals from different scatterers on a target,the phase difference between different scatterers on a target is estimated using the minimum entropy phase estimation method combining with the correlation between adjacent pulses.Then,the monopulse ratio is obtained by using the signals from the accumulated sum and difference channels.The target angle is estimated by weighting the accumulated echo energy for accu-racy enhancement.Experimental results based on both numeri-cal simulation and measured data are presented to validate the effectiveness of the proposed technique.
基金supported in part by Natural Science Foundation of Fujian Province(2021J05178)in part by the Scientific Research Foundation of Jimei University(ZQ2021001).
文摘In this paper,a novel wideband 8-element multiple-input and multiple-output(MIMO)antenna based on Booker’s relation is proposed for the fifth generation(5G)handset applications.The 8 antenna elements are arranged symmetrically along the two longer vertical side-edge frames of the handset.Each antenna element is composed of a monopole and a slot radiation structure,in which wideband characteristic covering 3140-5620MHz can be obtained.Note that the L-shaped monopole and the slot can be deemed as complementary counterparts approximatively.Furthermore,the Z-parameter of the proposed wideband antenna element is equivalent to the shunt impedance of monopole as well as slot radiator.Based on Booker’s relation,the wideband input impedance characteristic is therein achieved compared with conventional wideband technique such as multiresonance.Four L-shaped stubs as well as two slots etched on the ground plane are utilized to achieve acceptable isolation performance better than 13 dB,with total efficiency higher than 60%and envelope correlation coefficients(ECCs)lower than 0.1.The proposed antenna scheme can be a good candidate for 5G handset applications with the advantages of wideband,simple structure,high efficiency,and acceptable isolation performance.Also,the scheme might be a rewarding attempt to promote the Booker’s relation in the application of 5G terminal MIMO antenna designs.
基金supported by the National Fund for Distinguished Young Scholars(52025072)the National Natural Science Foundation of China(52177012)the Foundation of National Key Laboratory of Science and Technology(614221722051301).
文摘In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.
基金the Shaanxi Provincial Innovation Team Project(No.2020TD-019)the Xi'an Sciences Plan Project(No.2021XJZZ0075)。
文摘A Ka-band wideband microstrip-to-microstrip(MS-to-MS)vialess vertical transition on slotline multimode resonator(MMR)is presented.The proposed transition mainly consists of a slotline MMR on the common ground plane,and two microstrip(MS)lines facing each other at the top and third layers in the four-layered liquid crystal polymer(LCP)substrate.In order to improve the bandwidth of the proposed transition,a U-shaped branch is added to the top-and third-layer MS lines,separately.The slotline MMR can be properly excited by setting the position of the U-shaped branch line.As such,a three-pole wideband vertical transition is obtained,which shows a good transmission performance over a wide frequency range of 29.27-39.95 GHz.The three-pole wideband vertical transition based on multilayer LCP substrate is designed,fabricated,and measured.Test results indicate that a wide frequency range of 26.8436.26 GHz can be obtained with return loss better than-10dB and insertion loss less than-3dB.
文摘According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of direction finding with interferometer for wideband signals and multiple signals scene,a frequency domain phase interferometer is proposed and the concrete implementation scheme is given.The proposed method computes the phase difference in frequency domain,and finds multi-target results with judging the spectrum amplitude changing,and uses the frequency phase difference to compute the arrival angle.Theoretical analysis and simulation results show that the proposed method effectively solves the problem of the angle estimation with phase interferometer for wideband signals,and has good performance in multiple signals scene with nonoverlapping spectrum or partially overlapping.In addition,the wider the signal bandwidth,the better direction finding performance of this algorithm.
基金supported in part by the National Natural Science Foundation of China(Nos.U2268201,62271419)in part by the State Key Laboratory of Rail Transit Engineering Informatization(FSDI)under Grant 2022KY50ZD(ZNXT)-01.
文摘This paper presents a miniaturized wideband high-gain microstrip end-fire antenna specifically designed for 5G-R communication applications.The antenna structure comprises a microstrip folded dipole resonator and end-fire directing units.By employing Intercalated Coupling Structures(ICS)between the folded dipole resonator and the ground plane,the resonant frequency of the antenna is shifted to lower frequencies,thereby significantly enhancing the operational bandwidth.Furthermore,the inclusion of three end-fire directing units positioned in front of the folded dipole oscillator substantially improves the antenna's end-fire gain.The designed antenna exhibits a relative impedance bandwidth of 46%(ranging from 1.36 to 2.18 GHz),with a peak gain of 7.33 dBi at the 2100 MHz 5G-R frequency band.The overall dimensions of the antenna are 0.31λ_(L)×0.39λ_(L)×0.008λ_(L),whereλ_(L)denotes the wavelength at the lowest frequency.The proposed antenna demonstrates a broad operational bandwidth,rendering it suitable for 5G-R mobile communications.
基金supported by the Key Projects of the 2022 National Defense Science and Technology Foundation Strengthening Plan 173 (Grant No.2022-173ZD-010)the Equipment PreResearch Foundation of The State Key Laboratory (Grant No.6142101200204)。
文摘Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.
文摘In mmWave massive multiple-input multiple-output(MIMO)communication systems,the extension of low-complexity narrowband precoding schemes to be operated on wideband systems under frequency-selective channels remains an important challenge at the current time.This paper investigates a low complexity wideband hybrid precoding scheme for mmWave massive MIMO multicarrier systems under a single-user,fully-connected hybrid architecture.We show that the radio frequency(RF)precoding/combining vectors can be directly derived from the eigenvectors of the optimal fully-digital covariance matrix over all subcarriers in order to maximize the sum rate of spectral efficiency.We also suggest a new method that iteratively reduces the residual error between the covariance matrix and the sum of products of precoding matrices over all the subcarriers to improve the performance in the case where the number of RF chains is higher than the number of streams.The results of the simulation show that the proposed schemes’complexity is low compared to the present methods,and their performance can almost reach the upper bound achieved by the optimal full-baseband design.
基金the China National Space Administration program(D050102)Youth Innovation Promotion Association CAS(2021011).
文摘We present preliminary investigations of a potential optics system for wideband X-ray telescopes.The optical design adopts the conical approximation of the Wolter-I configuration and a combination of multilayer coatings and silicon pore optics.The total number of mirror modules is 79,distributed in 8 rows with the radii at the intersection plane between 250 mm and 500 mm.The optimization of the total effective area using the figure of merits method suggests that the focal length is 30 m and the mirror coating is a combination of the W/Si and Pt/C multilayers.This fulfills the on-axis effective area requirements of 2000 cm^(2) at 10 keV and 300 cm^(2) at 60 keV and provides a broad energy response between 3 keV and 78.4 keV.With the current geometry and coating compositions,we implement a mass modeling of the telescope in Geant4 to predict mirror performances via the ray-tracing algorithm,including the angular resolution and effective area.With the presumed metrological data as input,this can provide precision and finishing requirements for the manufacture of optics.This work demonstrates the feasibility of combining multilayer coatings and silicon pore optics for potential use in wideband X-ray telescopes and advances the development and progress of such missions.
文摘A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.
文摘A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz center frequency with an associated gain of 8.5dB and a gain flatness of + /- 0.6dB in the 4-12GHz frequency range.
文摘A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to extend the frequency tuning range, and the phase noise is optimized in the design procedure. The functional relationships between the phase noise and the transistors' width-length ratios are deduced by a linear time variant (LTV) model. The theoretical optimized parameter value ranges are determined. To simplify the calculation, the working region is split into several sub-ranges according to transistor working conditions. Thus, a lot of integrations are avoided, and the phase noise function upon the design variables can be expressed as simple proportion formats. Test results show that the DC current is 8.8 mA under a voltage supply of 1.8 V; the frequency range is 1.17 to 1.90 GHz, and the phase noise reaches - 83 dBc/Hz at a 10 kHz offset from the carrier. The chip size is 1. 2 mm × 0. 9 mm.
文摘This paper presents a VHF CMOS VCO. The most significant improvement on the VCO is that the cross-coupled MOSFET pairs are divided into several switchable parts so the characteristics can compensate the state change that results from the frequency tuning of the oscillator. This VCO is implemented in 0, 18μm CMOS with a core area of about 550μm × 700μm. The test results show that the tuning range covers 31-111MHz with a power consumption between 0.3-6. 9mW and a phase noise at a 100kHz offset of about - 110dBc/Hz.
基金supported by the National Natural Science Foundation of China(No.61571146)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when the bandwidth of wideband digital receiver increases,which both decrease the wideband radar signal detection performance,a new wideband digital receiver based on the modulated wideband converter(MWC)discrete compressed sampling structure and an energy detection method based on the new receiver are proposed.Firstly,the proposed receiver utilizes periodic pseudo-random sequences to mix wideband signals with baseband and other sub-bands.Then the mixed signals are low-pass filtered and downsampled to obtain the baseband compressed sampling data,which can increase the sensitivity of the system.Meanwhile,the cross-channel signal will all appear in any subbands,so the cross-channel signal problem can be solved easily by processing the baseband compressed sampling data.Secondly,we establish the signal detection model and formulate the criterion of the energy detection method.And we directly utilize the baseband compressed sampling data to carry out signal detection without signal reconstruction,which decreases the complexity of the algorithm and reduces the computational burden.Finally,simulation experiments demonstrate the effectiveness of the proposed receiver and show that the proposed signal detection method is effective in low signal-to-noise ratio(SNR)compared with the conventional energy detection and the probability of detection increases significantly when SNR increases.
基金Project supported by the National Natural Science Foundation of China (Grant No.60571053), and the Shanghai Leading Academic Discipline Project (Grant No.T0102).
文摘This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief history of the ultrawideband antennas is first provided. Several types of planar antennas for UWB systems with band-notched designs are reviewed. Special SWB planar antenna designs with the bandwidth ratio greater than 10:1 including metal-plate and printed monopole antennas and tapered slot antennas are presented and compared.
文摘The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.