Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the...Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community.展开更多
Agricultural mechanization plays a pivotal role in the transition from subsistence to commercial agriculture, with a particular focus on labour-intensive activities like harvesting. This study assesses the operational...Agricultural mechanization plays a pivotal role in the transition from subsistence to commercial agriculture, with a particular focus on labour-intensive activities like harvesting. This study assesses the operational characteristics of the BRRI Whole Feed Combine Harvester (Model BRRI WCH2021) at the field level. Developed under the SFMRA project, the harvester’s technical performance and loss assessment were conducted during the Boro 2022 and Aman 2022 seasons in farmer fields in Bangladesh’s Rangpur region. The field efficiency of the harvester was determined to be 62.5% and 57.9% in the Boro and Aman seasons, respectively. Fuel consumption rates were recorded at 2.77 l/ha and 2.31 l/ha for the Boro and Aman seasons. The total harvesting losses, encompassing cutter bar, shatter, cylinder, and separation loss, averaged 0.56% and 0.48% in the Boro and Aman seasons, respectively. Mechanized harvesting with the BRRI Whole Feed Combine Harvester significantly reduced paddy losses by 5.81% compared to manual methods. The field evaluation results indicate the combine harvester’s satisfactory performance, highlighting its potential to alleviate labour demands during peak harvesting. The development of the BRRI WCH offers a sustainable solution for rice harvesting mechanization among progressive farmers. It paves the way for the broader adoption of advanced agricultural technology in Bangladesh.展开更多
A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm de...A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.展开更多
The traditional payload attaching fitting (PAF) does not provide any vibration isolation, because of its large stiffness. Whole-spacecraft vibration isolation is a direct and effective approach to assure the successfu...The traditional payload attaching fitting (PAF) does not provide any vibration isolation, because of its large stiffness. Whole-spacecraft vibration isolation is a direct and effective approach to assure the successful launching and orbit insertion of a spacecraft. In view of the problems of stiffness and vibration isolation design, for which the designers care most, the study of whole-spacecraft vibration isolator (WSVI) consists of two parts. In the first part, the stiffness feature of the WSVI is studied...展开更多
English public speaking proves to play a significant role in the speaker's whole person education, which has been gaining increasing attention among scholars at home and abroad. The paper analyzes possible relatio...English public speaking proves to play a significant role in the speaker's whole person education, which has been gaining increasing attention among scholars at home and abroad. The paper analyzes possible relations between them and argues that great importance and awareness are supposed to be attached to the development and promotion of English public speaking especially among English majors for them to be more versatile and more competitive both in job markets and in work places.展开更多
Autosomal recessive cerebellar ataxias(ARCA) are a clinically and genetically heterogeneous group of rare neurodegenerative disorders characterized by autosomal recessive inheritance and an early age of onset. Progres...Autosomal recessive cerebellar ataxias(ARCA) are a clinically and genetically heterogeneous group of rare neurodegenerative disorders characterized by autosomal recessive inheritance and an early age of onset. Progressive ataxia is usually the prominent symptom and is often associated with other neurological or additional features. ARCA classification still remains controversial even though different approaches have been proposed over the years. Furthermore, ARCA molecular diagnosis has been a challenge due to phenotypic overlap and increased genetic heterogeneity observed within this group of disorders. Friedreich's ataxia and ataxia telangiectasia have been reported as the most frequent and well-studied forms of ARCA. Significant progress in understanding the genetic etiologies of the ARCA has been achieved during the last 15 years. The methodological revolution that has been observed in genetics over the last few years has contributed significantly to the molecular diagnosis of rare diseases including the ARCAs. Development of high throughput technologies has resulted in the identification of new ARCA genes and novel mutations in known ARCA genes. Therefore,an improvement in the molecular diagnosis of ARCA is expected. Moreover, based on the fact that many patients still remain undiagnosed, additional forms of ataxia are expected to be identified. We hereby review the current knowledge on the ARCAs, focused on the genetic findings of the most common forms that were molecularly characterized before the whole exome/genome era, as well as the most recently described forms that have been elucidated with the use of these novel technologies. The significant contribution of wholeexome sequencing or whole-genome sequencing in the molecular diagnosis of ARCAs is discussed.展开更多
We used whole-tree agarwood-induction technology to produce agarwood from Aquilaria sinensis trees within 20 months, and evaluated the quality of this agarwood. The results showed its characteristics were similar to t...We used whole-tree agarwood-induction technology to produce agarwood from Aquilaria sinensis trees within 20 months, and evaluated the quality of this agarwood. The results showed its characteristics were similar to those of high-grade wild agarwood in terms of texture, chemical constituents, essential oil content, and ethanol-soluble extract content, with the lattermost quality far surpassing the requirement of traditional Chinese medicine agarwood, as indicated in Chinese Pharmacopoeia 2010. To the best of our knowledge, this is first study to show that high-quality agarwood can be produced in whole A. sinensis trees via a chemically induced technology.展开更多
A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrum...A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrument, consists of different types of intelligent virtualinstrument (IVI) through individual components together as building blocks and can be displayeddirectly on the computer screen. This is a new concept of measuring instrument, and also animportant breakthrough after virtual instrument (VI). Virtual control makes instrument resourcesobtain further exploitation. It brings about a fundamental change to the design and manufacturingmode. The instrument therefore, can not only be produced directly inside a PC, but the product isinvolved in the 'green product' system. So far, all the present digital instruments will grow to bereplaced by intelligent control with green characteristics.展开更多
In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the wh...In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the whole production process with respect to the minimization of cost and environmental impact for the whole process.The following procedures are introduced in a WPPC process optimization:①a material and energy flow investigation and optimization based on a systematic understanding of the distribution and physiochemical properties of potential pollutants;②a process optimization to increase the utilization efficiency of different elements and minimize pollutant emissions;and③an evaluation to reveal the effectiveness of the optimization strategies.The production of ammonium paratungstate was chosen for the case study.Two factors of the different optimization schemes-namely the cost-effectiveness factor and the environmental impact indicator-were evaluated and compared.This research demonstrates that by considering the nature of potential pollutants,technological innovations,economic viability,environmental impacts,and regulation requirements,WPPC can efficiently optimize a metal production process.展开更多
AIM:To compare the performance of three commercially available anti-human epidermalgrowth factor receptor 2(HER2)antibodies in whole-tissue sections and tissue microarrays(TMAs)of a series of gastric tumors.METHODS:We...AIM:To compare the performance of three commercially available anti-human epidermalgrowth factor receptor 2(HER2)antibodies in whole-tissue sections and tissue microarrays(TMAs)of a series of gastric tumors.METHODS:We present a comparative analysis of three anti-HER2 antibodies(HercepTest,4B5 and SP3)using TMA and whole-tissue sections prepared from the same paraffin blocks of 199 gastric adenocarcinomas operated upon between January 2004 and December2008 at a Brazilian cancer hospital.The data on the patients’age,sex,the anatomical location of the tumor and the Lauren’s histological classification were collected from clinical and pathological records.The immunohistochemical(IHC)results were examined by two pathologists and the cases were classified as positive(3+),equivocal(2+)and negative(0 or 1+),according to the criteria of the IHC scoring system of gastric cancer.TMAs and whole-tissue sections were evaluated separately and independently.All cases yielding discordant IHC results and/or scored as 2+were subjected to dual-color in situ hybridization in order to determine the final HER2 status.Besides determining the sensitivity and predictive value for HER2-positive status,we measured the accuracy of each antibody by calculating the area under the receiver operating characteristic(ROC)curve.The agreement between the results obtained using the TMAs and those obtained using the whole-tissue sections was assessed by means of Kappa coefficient.RESULTS:Intratumoral heterogeneity of HER2 expression was observed with all antibodies.HER2-positive expression(3+)in the whole-tissue sections was observed in 23 cases(11.6%)using the 4B5 antibody,in 18 cases(9.1%)using the SP3 antibody and in 10 cases(5.1%)using the HercepTest antibody.In the TMAs,11 positive cases(5.6%)were identified using SP3 antibody,9(4.6%)using the 4B5 antibody and 6(3%)using the HercepTest antibody.The sensitivity using whole-tissue sections and TMA,respectively,was 95.2%and 42.9%with 4B5,90.5%and 66.7%with SP3 and 47.6%and42.9%with HercepTest.The accuracy,calculated from the area under the ROC curve,using whole-tissue sections and TMA,respectively,was 0.91 and 0.79 by 4B5,0.86 and 0.80 by SP3 and 0.73 and 0.71 by HercepTest.The concordance of the results obtained using wholetissue sections and TMA was 97.4%(Kappa 0.75)using HercepTest,85.6%(Kappa 0.56)using SP3 and 84.1%(Kappa 0.38)using 4B5.CONCLUSION:The use of the 4B5 antibody on wholetissue sections was the most accurate IHC method for evaluating HER2 expression in gastric adenocarcinoma.展开更多
AIM: To detect the pathogenetic mutations responsible for nonsyndromic autosomal recessive retinitis pigmentosa(RP) in 2 nonconsanguineous Chinese families. METHODS: The clinical data, including detailed medical histo...AIM: To detect the pathogenetic mutations responsible for nonsyndromic autosomal recessive retinitis pigmentosa(RP) in 2 nonconsanguineous Chinese families. METHODS: The clinical data, including detailed medical history, best corrected visual acuity(BCVA), slit-lamp biomicroscope examination, fundus photography, optical coherence tomography, static perimetry, and full field electroretinogram, were collected from the members of 2 nonconsanguineous Chinese families preliminarily diagnosed with RP. Genomic DNA was extracted from the probands and other available family members;wholeexome sequencing was conducted with the DNA samples provided by the probands, and all mutations detected by whole-exome sequencing were verified using Sanger sequencing in the probands and the other available family members. The verified novel mutations were further sequenced in 192 ethnicity matched healthy controls.RESULTS: The patients from the 2 families exhibited the typical symptoms of RP, including night blindness and progressive constriction of the visual field, and the fundus examinations showed attenuated retinal arterioles, peripheral bone spicule pigment deposits, and waxy optic discs. Whole-exome sequencing revealed a novel nonsense mutation in FAM161 A(c.943 A>T, p.Lys315*) and compound heterozygous mutations in RP1 L1(c.56 C>A, p.Pro19 His;c.5470 C>T, p.Gln1824*). The nonsense c.5470 C>T, p.Gln1824* mutation was novel. All mutations were verified by Sanger sequencing. The mutation p.Lys315* in FAM161A co-segregated with the phenotype, and all the nonsense mutations were absent from the ethnicity matched healthy controls and all available databases.CONCLUSION: We identify 2 novel mutations in genes responsible for autosomal recessive RP, and the mutation in FAM161A is reported for the first time in a Chinese population. Our result not only enriches the knowledge of the mutation frequency and spectrum in the genes responsible for nonsyndromic RP but also provides a new target for future gene therapy.展开更多
Reliable and accurate pre-implantation genetic diagnosis (PGD) of patient's embryos by next-generation sequencing (NGS) is dependent on efficient whole genome amplification (WGA) of a representative biopsy samp...Reliable and accurate pre-implantation genetic diagnosis (PGD) of patient's embryos by next-generation sequencing (NGS) is dependent on efficient whole genome amplification (WGA) of a representative biopsy sample. However, the performance of the current state of the art WGA methods has not been evaluated for sequencing. Using low template DNA (15 pg) and single cells, we showed that the two PCR-based WGA systems SurePlex and MALBAC are superior to the REPLI-g WGA multiple displacement amplification (MDA) system in terms of consistent and reproducible genome coverage and sequence bias across the 24 chromosomes, allowing better normalization of test to reference sequencing data. When copy number variation sequencing (CNV-Seq) was applied to single cell WGA products derived by either SurePlex or MALBAC amplification, we showed that known disease CNVs in the range of 3-15 Mb could be reliably and accurately detected at the correct genomic positions. These findings indicate that our CNV-Seq pipeline incorporating either SurePlex or MALBAC as the key initial WGA step is a powerful methodology for clinical PGD to identify euploid embryos in a patient's cohort for uterine transplantation,展开更多
Schizophrenia is a common disorder with a high heritability, but its genetic architecture is still elusive.We implemented whole-genome sequencing(WGS) analysis of 8 families with monozygotic(MZ) twin pairs discordant ...Schizophrenia is a common disorder with a high heritability, but its genetic architecture is still elusive.We implemented whole-genome sequencing(WGS) analysis of 8 families with monozygotic(MZ) twin pairs discordant for schizophrenia to assess potential association of de novo mutations(DNMs) or inherited variants with susceptibility to schizophrenia. Eight non-synonymous DNMs(including one splicing site) were identified and shared by twins, which were either located in previously reported schizophrenia risk genes(p.V24689 I mutation in TTN, p.S2506 T mutation in GCN1L1, IVS3+1G > T in DOCK1) or had a benign to damaging effect according to in silico prediction analysis. By searching the inherited rare damaging or loss-of-function(LOF) variants and common susceptible alleles from three classes of schizophrenia candidate genes, we were able to distill genetic alterations in several schizophrenia risk genes, including GAD1, PLXNA2, RELN and FEZ1. Four inherited copy number variations(CNVs; including a large deletion at 16p13.11) implicated for schizophrenia were identified in four families, respectively. Most of families carried both missense DNMs and inherited risk variants, which might suggest that DNMs, inherited rare damaging variants and common risk alleles together conferred to schizophrenia susceptibility. Our results support that schizophrenia is caused by a combination of multiple genetic factors, with each DNM/variant showing a relatively small effect size.展开更多
The prediction and assessment of environmental pollution by arsenic are important preconditions of advocating environmental protection and human health risk assessment. A yellow fluorescent protein-based whole-cell bi...The prediction and assessment of environmental pollution by arsenic are important preconditions of advocating environmental protection and human health risk assessment. A yellow fluorescent protein-based whole-cell biosensor for the detection of arsenite and arsenate was constructed and tested. An arsenic-resistant promoter and the regulatory gene arsR were obtained by PCR from the genome ofEscherichia coli DH5ct, andphiYFP was introduced into E. coli DH5ct as a reporter gene to construct an arsenic-resistant whole-cell biosensor (WCB-11) in which phiYFP was expressed well for the first time. Experimental results demonstrated that the biosensor has a good response to arsenic and the expression ofphiYFP. When strain WCB-11 was exposed to As^3+ and As^5+, the expression of yellow fluorescence was time-dependent and dose-dependent. This engineered construct is expected to become established as an inexpensive and convenient method for the detection of arsenic in the field.展开更多
Salinity is a major factor limiting rice yield in coastal areas of Asia. To facilitate breeding salt tolerant rice varieties, the wholeplant growth duration salt tolerance(ST) was genetically dissected by phenotypin...Salinity is a major factor limiting rice yield in coastal areas of Asia. To facilitate breeding salt tolerant rice varieties, the wholeplant growth duration salt tolerance(ST) was genetically dissected by phenotyping two sets of BC2F5 introgression lines(ILs) for four yield traits under severe natural salt stress and non-stress filed conditions using SSR markers and the methods of advanced backcross QTL(AB-QTL) analysis and selective introgression. Many QTLs affecting four yield traits under salt stress and nonstress conditions were identified, most(〉90%) of which were clustered in 13 genomic regions of the rice genome and involved in complex epistasis. Most QTLs affecting yield traits were differentially expressed under salt stress and non-stress conditions. Our results suggested that genetics complementarily provides an adequate explanation for the hidden genetic diversity for ST observed in both IL populations. Some promising Huanghuazhan(HHZ) ILs with favorable donor alleles at multiple QTLs and significantly improved yield traits under salt stress and non-stress conditions were identified, providing excellent materials and relevant genetic information for improving rice ST by marker-assisted selection(MAS) or genome selection.展开更多
文摘Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community.
文摘Agricultural mechanization plays a pivotal role in the transition from subsistence to commercial agriculture, with a particular focus on labour-intensive activities like harvesting. This study assesses the operational characteristics of the BRRI Whole Feed Combine Harvester (Model BRRI WCH2021) at the field level. Developed under the SFMRA project, the harvester’s technical performance and loss assessment were conducted during the Boro 2022 and Aman 2022 seasons in farmer fields in Bangladesh’s Rangpur region. The field efficiency of the harvester was determined to be 62.5% and 57.9% in the Boro and Aman seasons, respectively. Fuel consumption rates were recorded at 2.77 l/ha and 2.31 l/ha for the Boro and Aman seasons. The total harvesting losses, encompassing cutter bar, shatter, cylinder, and separation loss, averaged 0.56% and 0.48% in the Boro and Aman seasons, respectively. Mechanized harvesting with the BRRI Whole Feed Combine Harvester significantly reduced paddy losses by 5.81% compared to manual methods. The field evaluation results indicate the combine harvester’s satisfactory performance, highlighting its potential to alleviate labour demands during peak harvesting. The development of the BRRI WCH offers a sustainable solution for rice harvesting mechanization among progressive farmers. It paves the way for the broader adoption of advanced agricultural technology in Bangladesh.
文摘A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.
基金Commission of Science Technology and Industry for National Defense Project (C4120062301)
文摘The traditional payload attaching fitting (PAF) does not provide any vibration isolation, because of its large stiffness. Whole-spacecraft vibration isolation is a direct and effective approach to assure the successful launching and orbit insertion of a spacecraft. In view of the problems of stiffness and vibration isolation design, for which the designers care most, the study of whole-spacecraft vibration isolator (WSVI) consists of two parts. In the first part, the stiffness feature of the WSVI is studied...
文摘English public speaking proves to play a significant role in the speaker's whole person education, which has been gaining increasing attention among scholars at home and abroad. The paper analyzes possible relations between them and argues that great importance and awareness are supposed to be attached to the development and promotion of English public speaking especially among English majors for them to be more versatile and more competitive both in job markets and in work places.
文摘Autosomal recessive cerebellar ataxias(ARCA) are a clinically and genetically heterogeneous group of rare neurodegenerative disorders characterized by autosomal recessive inheritance and an early age of onset. Progressive ataxia is usually the prominent symptom and is often associated with other neurological or additional features. ARCA classification still remains controversial even though different approaches have been proposed over the years. Furthermore, ARCA molecular diagnosis has been a challenge due to phenotypic overlap and increased genetic heterogeneity observed within this group of disorders. Friedreich's ataxia and ataxia telangiectasia have been reported as the most frequent and well-studied forms of ARCA. Significant progress in understanding the genetic etiologies of the ARCA has been achieved during the last 15 years. The methodological revolution that has been observed in genetics over the last few years has contributed significantly to the molecular diagnosis of rare diseases including the ARCAs. Development of high throughput technologies has resulted in the identification of new ARCA genes and novel mutations in known ARCA genes. Therefore,an improvement in the molecular diagnosis of ARCA is expected. Moreover, based on the fact that many patients still remain undiagnosed, additional forms of ataxia are expected to be identified. We hereby review the current knowledge on the ARCAs, focused on the genetic findings of the most common forms that were molecularly characterized before the whole exome/genome era, as well as the most recently described forms that have been elucidated with the use of these novel technologies. The significant contribution of wholeexome sequencing or whole-genome sequencing in the molecular diagnosis of ARCAs is discussed.
基金supported by the National Key Technology R&D Program(No.2011BAI01B07)National Natural Science Foundation of China(Nos.81173481 and 31000136)+1 种基金Beijing Municipal Natural Science Foundation(No. 6102024)the key project in the Science & Technology Program of Hainan Provincial(No.ZDXM20120033)
文摘We used whole-tree agarwood-induction technology to produce agarwood from Aquilaria sinensis trees within 20 months, and evaluated the quality of this agarwood. The results showed its characteristics were similar to those of high-grade wild agarwood in terms of texture, chemical constituents, essential oil content, and ethanol-soluble extract content, with the lattermost quality far surpassing the requirement of traditional Chinese medicine agarwood, as indicated in Chinese Pharmacopoeia 2010. To the best of our knowledge, this is first study to show that high-quality agarwood can be produced in whole A. sinensis trees via a chemically induced technology.
基金This project is supported by National Natural Science Foundation of China(No.50135050).
文摘A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrument, consists of different types of intelligent virtualinstrument (IVI) through individual components together as building blocks and can be displayeddirectly on the computer screen. This is a new concept of measuring instrument, and also animportant breakthrough after virtual instrument (VI). Virtual control makes instrument resourcesobtain further exploitation. It brings about a fundamental change to the design and manufacturingmode. The instrument therefore, can not only be produced directly inside a PC, but the product isinvolved in the 'green product' system. So far, all the present digital instruments will grow to bereplaced by intelligent control with green characteristics.
基金The authors acknowledge financial support for this research from the National Key Research and Development Program of China(2017YFB0403300 and 2017YFB043305)the National Natural Science Foundation of China(51425405 and 51874269),the National Science-Technology Support Plan Projects(2015BAB02B05)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2014037).Zhi Sun acknowledges financial support from the National Youth Thousand Talents Program.The authors acknowledge constructive suggestions from Prof.Jianxin Yang.
文摘In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the whole production process with respect to the minimization of cost and environmental impact for the whole process.The following procedures are introduced in a WPPC process optimization:①a material and energy flow investigation and optimization based on a systematic understanding of the distribution and physiochemical properties of potential pollutants;②a process optimization to increase the utilization efficiency of different elements and minimize pollutant emissions;and③an evaluation to reveal the effectiveness of the optimization strategies.The production of ammonium paratungstate was chosen for the case study.Two factors of the different optimization schemes-namely the cost-effectiveness factor and the environmental impact indicator-were evaluated and compared.This research demonstrates that by considering the nature of potential pollutants,technological innovations,economic viability,environmental impacts,and regulation requirements,WPPC can efficiently optimize a metal production process.
文摘AIM:To compare the performance of three commercially available anti-human epidermalgrowth factor receptor 2(HER2)antibodies in whole-tissue sections and tissue microarrays(TMAs)of a series of gastric tumors.METHODS:We present a comparative analysis of three anti-HER2 antibodies(HercepTest,4B5 and SP3)using TMA and whole-tissue sections prepared from the same paraffin blocks of 199 gastric adenocarcinomas operated upon between January 2004 and December2008 at a Brazilian cancer hospital.The data on the patients’age,sex,the anatomical location of the tumor and the Lauren’s histological classification were collected from clinical and pathological records.The immunohistochemical(IHC)results were examined by two pathologists and the cases were classified as positive(3+),equivocal(2+)and negative(0 or 1+),according to the criteria of the IHC scoring system of gastric cancer.TMAs and whole-tissue sections were evaluated separately and independently.All cases yielding discordant IHC results and/or scored as 2+were subjected to dual-color in situ hybridization in order to determine the final HER2 status.Besides determining the sensitivity and predictive value for HER2-positive status,we measured the accuracy of each antibody by calculating the area under the receiver operating characteristic(ROC)curve.The agreement between the results obtained using the TMAs and those obtained using the whole-tissue sections was assessed by means of Kappa coefficient.RESULTS:Intratumoral heterogeneity of HER2 expression was observed with all antibodies.HER2-positive expression(3+)in the whole-tissue sections was observed in 23 cases(11.6%)using the 4B5 antibody,in 18 cases(9.1%)using the SP3 antibody and in 10 cases(5.1%)using the HercepTest antibody.In the TMAs,11 positive cases(5.6%)were identified using SP3 antibody,9(4.6%)using the 4B5 antibody and 6(3%)using the HercepTest antibody.The sensitivity using whole-tissue sections and TMA,respectively,was 95.2%and 42.9%with 4B5,90.5%and 66.7%with SP3 and 47.6%and42.9%with HercepTest.The accuracy,calculated from the area under the ROC curve,using whole-tissue sections and TMA,respectively,was 0.91 and 0.79 by 4B5,0.86 and 0.80 by SP3 and 0.73 and 0.71 by HercepTest.The concordance of the results obtained using wholetissue sections and TMA was 97.4%(Kappa 0.75)using HercepTest,85.6%(Kappa 0.56)using SP3 and 84.1%(Kappa 0.38)using 4B5.CONCLUSION:The use of the 4B5 antibody on wholetissue sections was the most accurate IHC method for evaluating HER2 expression in gastric adenocarcinoma.
基金Supported by the National Natural Science Foundation of China(No.81360154)
文摘AIM: To detect the pathogenetic mutations responsible for nonsyndromic autosomal recessive retinitis pigmentosa(RP) in 2 nonconsanguineous Chinese families. METHODS: The clinical data, including detailed medical history, best corrected visual acuity(BCVA), slit-lamp biomicroscope examination, fundus photography, optical coherence tomography, static perimetry, and full field electroretinogram, were collected from the members of 2 nonconsanguineous Chinese families preliminarily diagnosed with RP. Genomic DNA was extracted from the probands and other available family members;wholeexome sequencing was conducted with the DNA samples provided by the probands, and all mutations detected by whole-exome sequencing were verified using Sanger sequencing in the probands and the other available family members. The verified novel mutations were further sequenced in 192 ethnicity matched healthy controls.RESULTS: The patients from the 2 families exhibited the typical symptoms of RP, including night blindness and progressive constriction of the visual field, and the fundus examinations showed attenuated retinal arterioles, peripheral bone spicule pigment deposits, and waxy optic discs. Whole-exome sequencing revealed a novel nonsense mutation in FAM161 A(c.943 A>T, p.Lys315*) and compound heterozygous mutations in RP1 L1(c.56 C>A, p.Pro19 His;c.5470 C>T, p.Gln1824*). The nonsense c.5470 C>T, p.Gln1824* mutation was novel. All mutations were verified by Sanger sequencing. The mutation p.Lys315* in FAM161A co-segregated with the phenotype, and all the nonsense mutations were absent from the ethnicity matched healthy controls and all available databases.CONCLUSION: We identify 2 novel mutations in genes responsible for autosomal recessive RP, and the mutation in FAM161A is reported for the first time in a Chinese population. Our result not only enriches the knowledge of the mutation frequency and spectrum in the genes responsible for nonsyndromic RP but also provides a new target for future gene therapy.
基金supported by grants awarded to Yuanqing Yao by the Key Program of the "Twelfth Five-year plan" of People’s liberation Army(No.BWS11J058)the National High Technology Research and Development Program(SS2015AA020402)
文摘Reliable and accurate pre-implantation genetic diagnosis (PGD) of patient's embryos by next-generation sequencing (NGS) is dependent on efficient whole genome amplification (WGA) of a representative biopsy sample. However, the performance of the current state of the art WGA methods has not been evaluated for sequencing. Using low template DNA (15 pg) and single cells, we showed that the two PCR-based WGA systems SurePlex and MALBAC are superior to the REPLI-g WGA multiple displacement amplification (MDA) system in terms of consistent and reproducible genome coverage and sequence bias across the 24 chromosomes, allowing better normalization of test to reference sequencing data. When copy number variation sequencing (CNV-Seq) was applied to single cell WGA products derived by either SurePlex or MALBAC amplification, we showed that known disease CNVs in the range of 3-15 Mb could be reliably and accurately detected at the correct genomic positions. These findings indicate that our CNV-Seq pipeline incorporating either SurePlex or MALBAC as the key initial WGA step is a powerful methodology for clinical PGD to identify euploid embryos in a patient's cohort for uterine transplantation,
基金supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB02020003 and XDB02030002)the Bureau of Frontier Sciences and Education,Chinese Academy of Sciences (QYZDJ-SSW-SMC005)+3 种基金the National Natural Science Foundation of China (Nos. 81088001,81271484,81471361 and 81371480)the Beijing Training Project for the Leading Talents in S & T (Z151100000315020)the National Key Basic Research and Development Program (973) (2012CB517904)the CAS/SAFEA International Partnership Programme for Creative Research Teams (Y2CX131003)
文摘Schizophrenia is a common disorder with a high heritability, but its genetic architecture is still elusive.We implemented whole-genome sequencing(WGS) analysis of 8 families with monozygotic(MZ) twin pairs discordant for schizophrenia to assess potential association of de novo mutations(DNMs) or inherited variants with susceptibility to schizophrenia. Eight non-synonymous DNMs(including one splicing site) were identified and shared by twins, which were either located in previously reported schizophrenia risk genes(p.V24689 I mutation in TTN, p.S2506 T mutation in GCN1L1, IVS3+1G > T in DOCK1) or had a benign to damaging effect according to in silico prediction analysis. By searching the inherited rare damaging or loss-of-function(LOF) variants and common susceptible alleles from three classes of schizophrenia candidate genes, we were able to distill genetic alterations in several schizophrenia risk genes, including GAD1, PLXNA2, RELN and FEZ1. Four inherited copy number variations(CNVs; including a large deletion at 16p13.11) implicated for schizophrenia were identified in four families, respectively. Most of families carried both missense DNMs and inherited risk variants, which might suggest that DNMs, inherited rare damaging variants and common risk alleles together conferred to schizophrenia susceptibility. Our results support that schizophrenia is caused by a combination of multiple genetic factors, with each DNM/variant showing a relatively small effect size.
基金supported by the National Natural Science Foundation of China (No. 20707035,20777089)the National High Technology Research and Development Program (863) of China (No. 2007AA06A407)
文摘The prediction and assessment of environmental pollution by arsenic are important preconditions of advocating environmental protection and human health risk assessment. A yellow fluorescent protein-based whole-cell biosensor for the detection of arsenite and arsenate was constructed and tested. An arsenic-resistant promoter and the regulatory gene arsR were obtained by PCR from the genome ofEscherichia coli DH5ct, andphiYFP was introduced into E. coli DH5ct as a reporter gene to construct an arsenic-resistant whole-cell biosensor (WCB-11) in which phiYFP was expressed well for the first time. Experimental results demonstrated that the biosensor has a good response to arsenic and the expression ofphiYFP. When strain WCB-11 was exposed to As^3+ and As^5+, the expression of yellow fluorescence was time-dependent and dose-dependent. This engineered construct is expected to become established as an inexpensive and convenient method for the detection of arsenic in the field.
基金funded by the National High-Tech R&D Program of China (2012AA101101)the 948 Project from the Ministry of Agriculture, China (2010-G2B)+1 种基金the International Cooperative Project from the Ministry of Science and Technology, China (S2012ZR0160)the Bill & Melinda Gates Foundation Project (OPP51587)
文摘Salinity is a major factor limiting rice yield in coastal areas of Asia. To facilitate breeding salt tolerant rice varieties, the wholeplant growth duration salt tolerance(ST) was genetically dissected by phenotyping two sets of BC2F5 introgression lines(ILs) for four yield traits under severe natural salt stress and non-stress filed conditions using SSR markers and the methods of advanced backcross QTL(AB-QTL) analysis and selective introgression. Many QTLs affecting four yield traits under salt stress and nonstress conditions were identified, most(〉90%) of which were clustered in 13 genomic regions of the rice genome and involved in complex epistasis. Most QTLs affecting yield traits were differentially expressed under salt stress and non-stress conditions. Our results suggested that genetics complementarily provides an adequate explanation for the hidden genetic diversity for ST observed in both IL populations. Some promising Huanghuazhan(HHZ) ILs with favorable donor alleles at multiple QTLs and significantly improved yield traits under salt stress and non-stress conditions were identified, providing excellent materials and relevant genetic information for improving rice ST by marker-assisted selection(MAS) or genome selection.