To meet some special requirements such as paper filler,ceramic titanium white and synthetic 4A zeolite, the raising whiteness of calcined kaolin has become more and more important. The calcined experiments were carrie...To meet some special requirements such as paper filler,ceramic titanium white and synthetic 4A zeolite, the raising whiteness of calcined kaolin has become more and more important. The calcined experiments were carried out with and without additive to increase the whiteness of calcined kaolin. Results show that additive of chloride (A) or oxides can obviously increase the whiteness of calcined kaolin. Meantime,the mechanisms of enhancing the whiteness of calcined kaolin were discussed.展开更多
A kind of enhancing mechanism of structural whiteness dependence on amorphous photonic crystal (APC) structure is introduced in this paper. In the glaze system composed of albite, kaolin, talc, calcite, quartz, titani...A kind of enhancing mechanism of structural whiteness dependence on amorphous photonic crystal (APC) structure is introduced in this paper. In the glaze system composed of albite, kaolin, talc, calcite, quartz, titanium dioxide and zinc oxide, the APC structure will be produced by using quartz as a variable to induce the phase separation. Under different polarities between Ti, Zn etc. and Siion, the separated spheres with the core-shell structure can be obtained and then make up opal-like APCs in the glaze layer. In addition to inner and outer layers of core-shell spheres, the calculated results of refractive indices clearly show the great difference between the particles and the matrix. As a result of different refractive indices, the multiple scatting of visible light plays a key rote in the structural whiteness. However, due to the decrease of the cationic content, APCs with the reverse opal structure would be formed in the interface between glaze and body. Ultimately, the glaze appearance reveals extremely high structural whiteness due to the special APC structure.展开更多
Intracerebral hemorrhage is the most dangerous subtype of stroke,characterized by high mortality and morbidity rates,and frequently leads to significant secondary white matter injury.In recent decades,studies have rev...Intracerebral hemorrhage is the most dangerous subtype of stroke,characterized by high mortality and morbidity rates,and frequently leads to significant secondary white matter injury.In recent decades,studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota–brain axis.This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury.The NACHT,LRR,and pyrin domain-containing protein 3(NLRP3)inflammasome plays a crucial role in this context.This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome.These mechanisms include metabolic pathways(involving short-chain fatty acids,lipopolysaccharides,lactic acid,bile acids,trimethylamine-N-oxide,and tryptophan),neural pathways(such as the vagus nerve and sympathetic nerve),and immune pathways(involving microglia and T cells).We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage.The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood–brain barrier,inducing neuroinflammation,and interfering with nerve regeneration.Finally,we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury.Our review highlights the critical role of the gut microbiota–brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage,paving the way for exploring potential therapeutic approaches.展开更多
Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables th...Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables this dynamic is the white matter(WM),known to be affected in neurodevelopmental disorders(NDDs)(Rokach et al.,2024).WM formation is mediated by myelination,a multifactorial process driven by neuro-glia interactions dependent on proper neuronal functionality(Simons and Trajkovic,2006).Another key aspect of neurodevelopmental abnormalities involves neuronal dynamics and function,with recent advances significantly enhancing our understanding of both neuronal and glial mitochondrial function(Devine and Kittler,2018;Rojas-Charry et al.,2021).Energy homeostasis in neurons,attributed largely to mitochondrial function,is critical for proper functionality and interactions with oligodendrocytes(OLs),the cells forming myelin in the brain’s WM.We herein discuss the interplay between these processes and speculate on potential dysfunction in NDDs.展开更多
Chronic cerebral hypoperfusion can lead to neuronal necrosis,trigger inflammatory responses,promote white matter damage,and ultimately result in cognitive impairment.Consequently,chronic cerebral hypoperfusion is an i...Chronic cerebral hypoperfusion can lead to neuronal necrosis,trigger inflammatory responses,promote white matter damage,and ultimately result in cognitive impairment.Consequently,chronic cerebral hypoperfusion is an important factor influencing the onset and progression of vascular dementia.The myelin sheath is a critical component of white matter,and damage and repair of the white matter are closely linked to myelin sheath integrity.This article reviews the role of microglia in vascular dementia,focusing on their effects on myelin sheaths and the potential therapeutic implications.The findings suggest that ischemia and hypoxia cause disruption of the blood-brain barrier and activate microglia,which may worsen blood-brain barrier damage through the release of matrix-degrading enzymes.Microglia-mediated metabolic reprogramming is recognized as an important driver of inflammation.Damage to the blood-brain barrier and subsequent inflammation can lead to myelin injury and accelerate the progression of vascular dementia.Early activation of microglia is a protective response that contributes to the maintenance of blood-brain barrier integrity through sensing,debris-clearing,and defensive mechanisms.However,prolonged activation can trigger a shift in microglia toward the pro-inflammatory M1 phenotype,resulting in myelin damage and cognitive impairment.Triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells 1 have been identified as potential biomarkers for vascular dementia,as both are closely linked to cognitive decline.Although effective clinical treatments for myelin damage in the central nervous system are currently lacking,researchers are actively working to develop targeted therapies.Several drugs,including nimodipine,dopaminergic agents,simvastatin,biotin,and quetiapine,have been evaluated for clinical use in treating microglial and myelin damage.Future research will face challenges in developing targeted therapeutic strategies for vascular dementia,requiring further investigation into the timing,duration,and specific mechanisms of microglial activation,as well as the exploration of new drug combinations and additional therapeutic targets.展开更多
Spinal cord injury(SCI)interrupts the flow of information between the brain and the spinal cord,thus leading to a loss of sensory information and motor paralysis of the body below the lesion.Surprisingly,most SCIs are...Spinal cord injury(SCI)interrupts the flow of information between the brain and the spinal cord,thus leading to a loss of sensory information and motor paralysis of the body below the lesion.Surprisingly,most SCIs are incomplete and spare supraspinal pathways,especially those located within the peripheral white matter of the spinal cord,which includes reticulospinal pathways originating from the medullary reticular formation.Whereas there is abundant literature about the motor cortex,its corticospinal pathway,and its capacity to modulate functional recovery after SCI,less is known about the medullary reticular formation and its reticulospinal pathway.展开更多
Myelination,the continuous ensheathment of neuronal axons,is a lifelong process in the nervous system that is essential for the precise,temporospatial conduction of action potentials between neurons.Myelin also provid...Myelination,the continuous ensheathment of neuronal axons,is a lifelong process in the nervous system that is essential for the precise,temporospatial conduction of action potentials between neurons.Myelin also provides intercellular metabolic support to axons.Even minor disruptions in the integrity of myelin can impair neural performance and increase susceptibility to neurological diseases.In fact,myelin degeneration is a well-known neuropathological condition that is associated with normal aging and several neurodegenerative diseases,including multiple sclerosis and Alzheimer’s disease.In the central nervous system,compact myelin sheaths are formed by fully mature oligodendrocytes.However,the entire oligodendrocyte lineage is susceptible to changes in the biological microenvironment and other risk factors that arise as the brain ages.In addition to their well-known role in action potential propagation,oligodendrocytes also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes.Therefore,myelin degeneration in the aging central nervous system is a significant contributor to the development of neurodegenerative diseases.Interventions that mitigate age-related myelin degeneration can improve neurological function in aging individuals.In this review,we investigate the changes in myelin that are associated with aging and their underlying mechanisms.We also discuss recent advances in understanding how myelin degeneration in the aging brain contributes to neurodegenerative diseases and explore the factors that can prevent,slow down,or even reverse age-related myelin degeneration.Future research will enhance our understanding of how reducing age-related myelin degeneration can be used as a therapeutic target for delaying or preventing neurodegenerative diseases.展开更多
Recent evidence suggests that ferroptosis plays a crucial role in the occurrence and development of white matter lesions.However,the mechanisms and regulatory pathways involved in ferroptosis within white matter lesio...Recent evidence suggests that ferroptosis plays a crucial role in the occurrence and development of white matter lesions.However,the mechanisms and regulatory pathways involved in ferroptosis within white matter lesions remain unclear.Long non-coding RNAs(lnc RNAs)have been shown to influence the occurrence and development of these lesions.We previously identified lnc_011797 as a biomarker of white matter lesions by high-throughput sequencing.To investigate the mechanism by which lnc_011797 regulates white matter lesions,we established subjected human umbilical vein endothelial cells to oxygenglucose deprivation to simulate conditions associated with white matter lesions.The cells were transfected with lnc_011797 overexpression or knockdown lentiviruses.Our findings indicate that lnc_011797 promoted ferroptosis in these cells,leading to the formation of white matter lesions.Furthermore,lnc_011797 functioned as a competitive endogenous RNA(ce RNA)for mi R-193b-3p,thereby regulating the expression of WNK1 and its downstream ferroptosis-related proteins.To validate the role of lnc_011797 in vivo,we established a mouse model of white matter lesions through bilateral common carotid artery stenosis.The results from this model confirmed that lnc_011797 regulates ferroptosis via WNK1 and promotes the development of white matter lesions.These findings clarify the mechanism by which lnc RNAs regulate white matter lesions,providing a new target for the diagnosis and treatment of white matter lesions.展开更多
The presence of impurities in phosphogypsum has long impeded its effective utilization,highlighting the need for energy-efficient and sustainable purification methods.This study proposes a novel purification strategy ...The presence of impurities in phosphogypsum has long impeded its effective utilization,highlighting the need for energy-efficient and sustainable purification methods.This study proposes a novel purification strategy that synergistically combines pH regulation and micelle-assisted treatment to create an optimized microenvironment for impurity removal.Under mechanical grinding conditions,this approach enhances the rheological properties of the phosphogypsumslurries and facilitates the dissolution and removal of impurity ions.Experimental results demonstrate that the synergistic method achieves a remarkable 64.01%increase in whiteness while significantly reducing soluble phosphorus and fluoride content in a single-step process.This technique not only achieves high purification efficiency but also offers a practical pathway for the high-value utilization of phosphogypsum.These findings suggest that this method has substantial potential for enhancing sustainable resource management and enabling broader industrial applications of purified phosphogypsum.展开更多
Subarachnoid hemorrhage leads to a series of pathological changes,including vascular spasm,cellular apoptosis,blood–brain barrier damage,cerebral edema,and white matter injury.Microglia,which are the key immune cells...Subarachnoid hemorrhage leads to a series of pathological changes,including vascular spasm,cellular apoptosis,blood–brain barrier damage,cerebral edema,and white matter injury.Microglia,which are the key immune cells in the central nervous system,maintain homeostasis in the neural environment,support neurons,mediate apoptosis,participate in immune regulation,and have neuroprotective effects.Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage.Moreover,microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage.Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury.This provides new targets and ideas for the treatment of subarachnoid hemorrhage.However,an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking.This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm,neuroinflammation,neuronal apoptosis,blood–brain barrier disruption,cerebral edema,and cerebral white matter lesions.It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage.Currently,microglia in subarachnoid hemorrhage are targeted with TLR inhibitors,nuclear factor-κB and STAT3 pathway inhibitors,glycine/tyrosine kinases,NLRP3 signaling pathway inhibitors,Gasdermin D inhibitors,vincristine receptorαreceptor agonists,ferroptosis inhibitors,genetic modification techniques,stem cell therapies,and traditional Chinese medicine.However,most of these are still being evaluated at the laboratory stage.More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.展开更多
Enamel demineralization,the formation of white spot lesions,is a common issue in clinical orthodontic treatment.The appearance of white spot lesions not only affects the texture and health of dental hard tissues but a...Enamel demineralization,the formation of white spot lesions,is a common issue in clinical orthodontic treatment.The appearance of white spot lesions not only affects the texture and health of dental hard tissues but also impacts the health and aesthetics of teeth after orthodontic treatment.The prevention,diagnosis,and treatment of white spot lesions that occur throughout the orthodontic treatment process involve multiple dental specialties.This expert consensus will focus on providing guiding opinions on the management and prevention of white spot lesions during orthodontic treatment,advocating for proactive prevention,early detection,timely treatment,scientific follow-up,and multidisciplinary management of white spot lesions throughout the orthodontic process,thereby maintaining the dental health of patients during orthodontic treatment.展开更多
With the advancement of astronomical observation technology,people have a deeper understanding of the formation and evolution of galaxies,but many details of our own Milky Way and other external galaxies are still unk...With the advancement of astronomical observation technology,people have a deeper understanding of the formation and evolution of galaxies,but many details of our own Milky Way and other external galaxies are still unknown.Therefore,by studying the formation and orbital transformation mechanism of satellites,planets and stars,the author puts forward a new theory on the formation and evolution of stars and galaxies,thus revealing the hierarchical structure of galaxies and the formation and evolution laws of main sequence stars,red giants,white dwarfs,black dwarfs,supernovae,neutron stars,black holes and quasars.Some special phenomena in the course of star formation and evolution,such as sunspots,flares,fast radio bursts and gamma-ray bursts,have also been revealed.展开更多
Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxy...Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxylum bungeanum,which promotes the management of obesity by triggering the browning of white adipose tissue(WAT)targeting the membrane receptor of transient receptor potential vanilloid 1(TRPV1).However,HAS easily undergoes configuration transformation and oxidative degradation.The short peptide CKGGRAKDC or adipose-targeting sequence(ATS)binds specifically to prohibitin on the surface of WAT cells and can be used as recognition assembly to enhance adipocyte targetability.Furthermore,mesoporous silica nanoparticles(MSNs)are widely used in drug delivery systems because of their large specific surface area and pore volume.Therefore,HAS-loaded adipose-targeted MSNs(MSNs-ATS)were developed to enhance the adipocyte targetability,safety,and efficacy of HAS,and tested on mature 3T3-L1 cells and obese mouse models.MSNs-ATS showed higher specificity for adipocyte targetability without obvious toxicity.HAS-loaded MSNs-ATS showed anti-obesity effects superior to those of HAS alone.In conclusion,we successfully developed adipocyte-targeted,HAS-loaded MSNs with good safety and anti-obesity effects.展开更多
As the population ages,the burden of age-related diseases becomes greater.Currently,over 55 million people suffer from dementia worldwide,with Alzheimer’s disease being the most common form.However,it is becoming cle...As the population ages,the burden of age-related diseases becomes greater.Currently,over 55 million people suffer from dementia worldwide,with Alzheimer’s disease being the most common form.However,it is becoming clearer that underlying vascular pathology such as cerebral small vessel disease(cSVD)may be a more detrimental cause for dementia(Cuadrado-Godia et al.,2018).It is estimated that 10%-30%of the elderly population and 35%-90%of all dementia patients exhibit signs of cSVD.The term cSVD refers to pathology affecting the small vessels of the brain,which can lead to lacunar cerebral infarcts,enlarged perivascular spaces,and cortical hemorrhages(Cuadrado-Godia et al.,2018).CSVD is often associated with cognitive decline,gait problems,and dementia(Cuadrado-Godia et al.,2018).展开更多
The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs b...The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs based on M-EMLs separated by polyethyleneimine ethoxylated(PEIE)layer with different stacking sequences of blue(B),green(G),and red(R)QDs layer were used to intuitively explore the injection,transportation and recombination processes of the charge carriers in QLEDs by using the time-resolved electroluminescence(TrEL)spectra.From the TrEL spectra mea-surements,green and red emissions were obtained first in the QLEDs with the EMLs sequences of G/PEIE/B/PEIE/R and B/PEIE/R/PEIE/G along the direction of light emission,respectively.While the QLEDs adopt EMLs sequences of B/PEIE/G/PEIE/R,the blue,green and red emissions were obtained nearly at the same time.The above phenomenon can be attributed to different charge carrier transmission and radiation recombination process in the EMLs due to different valence band offsets and conduction band offsets between R-,G-and B-QDs by using different sequences of EMLs.White emission with coordi-nates of(0.31,0.31)and correlated color temperature(CCT)of 5916 K was obtained in the QLEDs with the EMLs se-quences of B/PEIE/G/PEIE/R,which can be attributed to the relative uniform emission of B-,G-and R-QDs due to the effec-tive injection and radiation recombination of charge carriers in each of the EMLs.The above results have great significance for further understanding and improving the performance of QLEDs with M-EMLs.展开更多
To further understand the performance of the energy harvesters under the influence of the wind force and the random excitation,this paper investigates the stochastic response of the bio-inspired energy harvesters subj...To further understand the performance of the energy harvesters under the influence of the wind force and the random excitation,this paper investigates the stochastic response of the bio-inspired energy harvesters subjected to Gaussian white noise and galloping excitation,simulating the flapping pattern of a seagull and its interaction with wind force.The equivalent linearization method is utilized to convert the original nonlinear model into the Itôstochastic differential equation by minimizing the mean squared error.Then,the second-order steady-state moments about the displacement,velocity,and voltage are derived by combining the moment analysis theory.The theoretical results are simulated numerically to analyze the stochastic response performance under different noise intensities,wind speeds,stiffness coefficients,and electromechanical coupling coefficients,time domain analysis is also conducted to study the performance of the harvester with different parameters.The results reveal that the mean square displacement and voltage increase with increasing the noise intensity and wind speed,larger absolute values of stiffness coefficient correspond to smaller mean square displacement and voltage,and larger electromechanical coupling coefficients can enhance the mean square voltage.Finally,the influence of wind speed and electromechanical coupling coefficient on the stationary probability density function(SPDF)is investigated,revealing the existence of a bimodal distribution under varying environmental conditions.展开更多
I shall deserve the Reputation of having beene ye first to lay the grounds of two Sciences,"wrote Thomas Hobbes in 1646,"this of Optiques and yt other of natural Justice."For him,optics and politics wer...I shall deserve the Reputation of having beene ye first to lay the grounds of two Sciences,"wrote Thomas Hobbes in 1646,"this of Optiques and yt other of natural Justice."For him,optics and politics were two prongs of the same effort:to naturalize humans’relations to their world and to each other.It was Descartes’Dioptrique,handed to him by Kenelm Digby in 1637,that cleared for him the path:naturalizing humans required physicalizing vision–as Kepler taught in his own optics–and removing from nature of all cognitive entities such as"species visible and intelligible."Between 1639 and 1646 Hobbes produced three professional,innovative treatises on optics founded upon"the opinion of the excellent Monsieur Des Cartes"but,finally,diverging from it in the most crucial point.For Descartes,ridding"Matter[of all]such Descriptions…as belong but to Spiritual Beings"required a spiritual,non-material entity to interpret the physical effects of the senses.Hobbes,however,insisted that the interpretation can and should be understood physically and mechanically,for"Vision is the judgement itself.展开更多
Representatives from nearly 50 countries and regions share their thoughts on how to correct development imbalances and protect people’s rights in all areas.YUCUN,a small village in Zhejiang Province,is known for its ...Representatives from nearly 50 countries and regions share their thoughts on how to correct development imbalances and protect people’s rights in all areas.YUCUN,a small village in Zhejiang Province,is known for its beautiful scenery,with white egrets flying in a blue sky and mandarin fish jumping out of the clear water of its lakes and rivers.The houses are equally picturesque,dainty three-storied villas with white walls and black tiles.展开更多
Multiple evanescent white dot syndrome(MEWDS)is an inflammatory fundus disease primarily affecting the outer retina.It is characterized by transient yellow-white dots on the outer retina.Although the exact pathogenesi...Multiple evanescent white dot syndrome(MEWDS)is an inflammatory fundus disease primarily affecting the outer retina.It is characterized by transient yellow-white dots on the outer retina.Although the exact pathogenesis remains unclear,the progress in multimodal imaging(MMI)has enhanced our understanding of MEWDS.Most cases of MEWDS are idiopathic,lacking a definite cause,and can spontaneously recover;these are what we term classic MEWDS.Consequently,MEWDS is often referred to as the“common cold of the retina”.Simultaneously,patients with other disorders may present with varying degrees of manifestations similar to MEWDS.The resemblance in clinical or imaging findings can lead to misdiagnosis and inappropriate treatment.These MEWDS-like presentations are actually caused by other systemic or ocular disorders with diverse mechanisms.Thus,they differ from classic MEWDS in certain aspects.Using the keywords“MEWDSlike”and“Secondary MEWDS”,we searched for all relevant studies published in the PubMed database from January 2021 to January 2024.Subsequently,we retrospectively summarized the clinical and imaging characteristics of MEWDS,along with the manifestations in other diseases that resembled those of MEWDS,and compared classic MEWDS with these similar presentations.Based on our review,we classified such similar presentations under other conditions into two categories and summarized their features for differential diagnosis.We recommend paying close attention to patients suspected of having MEWDS,as there may be more serious systemic or ocular disorders that require prompt treatment.展开更多
文摘To meet some special requirements such as paper filler,ceramic titanium white and synthetic 4A zeolite, the raising whiteness of calcined kaolin has become more and more important. The calcined experiments were carried out with and without additive to increase the whiteness of calcined kaolin. Results show that additive of chloride (A) or oxides can obviously increase the whiteness of calcined kaolin. Meantime,the mechanisms of enhancing the whiteness of calcined kaolin were discussed.
基金the National Natural Science Foundation of China (Grant No. 21661017)the Natural Science Foundation of Jiangxi Province (Grant No. 20161B AB203081)the Foundation of Jiangxi Provincial Department of Education (Grant Nos. GJJ170795 and GJJ180718).
文摘A kind of enhancing mechanism of structural whiteness dependence on amorphous photonic crystal (APC) structure is introduced in this paper. In the glaze system composed of albite, kaolin, talc, calcite, quartz, titanium dioxide and zinc oxide, the APC structure will be produced by using quartz as a variable to induce the phase separation. Under different polarities between Ti, Zn etc. and Siion, the separated spheres with the core-shell structure can be obtained and then make up opal-like APCs in the glaze layer. In addition to inner and outer layers of core-shell spheres, the calculated results of refractive indices clearly show the great difference between the particles and the matrix. As a result of different refractive indices, the multiple scatting of visible light plays a key rote in the structural whiteness. However, due to the decrease of the cationic content, APCs with the reverse opal structure would be formed in the interface between glaze and body. Ultimately, the glaze appearance reveals extremely high structural whiteness due to the special APC structure.
基金supported by the Guangdong Basic and Applied Basic Research Foundation,No.2023A1515030045(to HS)Presidential Foundation of Zhujiang Hospital of Southern Medical University,No.yzjj2022ms4(to HS)。
文摘Intracerebral hemorrhage is the most dangerous subtype of stroke,characterized by high mortality and morbidity rates,and frequently leads to significant secondary white matter injury.In recent decades,studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota–brain axis.This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury.The NACHT,LRR,and pyrin domain-containing protein 3(NLRP3)inflammasome plays a crucial role in this context.This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome.These mechanisms include metabolic pathways(involving short-chain fatty acids,lipopolysaccharides,lactic acid,bile acids,trimethylamine-N-oxide,and tryptophan),neural pathways(such as the vagus nerve and sympathetic nerve),and immune pathways(involving microglia and T cells).We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage.The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood–brain barrier,inducing neuroinflammation,and interfering with nerve regeneration.Finally,we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury.Our review highlights the critical role of the gut microbiota–brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage,paving the way for exploring potential therapeutic approaches.
文摘Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables this dynamic is the white matter(WM),known to be affected in neurodevelopmental disorders(NDDs)(Rokach et al.,2024).WM formation is mediated by myelination,a multifactorial process driven by neuro-glia interactions dependent on proper neuronal functionality(Simons and Trajkovic,2006).Another key aspect of neurodevelopmental abnormalities involves neuronal dynamics and function,with recent advances significantly enhancing our understanding of both neuronal and glial mitochondrial function(Devine and Kittler,2018;Rojas-Charry et al.,2021).Energy homeostasis in neurons,attributed largely to mitochondrial function,is critical for proper functionality and interactions with oligodendrocytes(OLs),the cells forming myelin in the brain’s WM.We herein discuss the interplay between these processes and speculate on potential dysfunction in NDDs.
基金supported by the Natural Science Foundation of Beijing,No.7232279(to XW)the National Natural Science Foundation of China,No.U21A20400(to QW)Key Project of Beijing University of Chinese Medicine,Nos.2022-JYB-JBZR-004(to XW),2024-JYB-JBZD-043(to CL).
文摘Chronic cerebral hypoperfusion can lead to neuronal necrosis,trigger inflammatory responses,promote white matter damage,and ultimately result in cognitive impairment.Consequently,chronic cerebral hypoperfusion is an important factor influencing the onset and progression of vascular dementia.The myelin sheath is a critical component of white matter,and damage and repair of the white matter are closely linked to myelin sheath integrity.This article reviews the role of microglia in vascular dementia,focusing on their effects on myelin sheaths and the potential therapeutic implications.The findings suggest that ischemia and hypoxia cause disruption of the blood-brain barrier and activate microglia,which may worsen blood-brain barrier damage through the release of matrix-degrading enzymes.Microglia-mediated metabolic reprogramming is recognized as an important driver of inflammation.Damage to the blood-brain barrier and subsequent inflammation can lead to myelin injury and accelerate the progression of vascular dementia.Early activation of microglia is a protective response that contributes to the maintenance of blood-brain barrier integrity through sensing,debris-clearing,and defensive mechanisms.However,prolonged activation can trigger a shift in microglia toward the pro-inflammatory M1 phenotype,resulting in myelin damage and cognitive impairment.Triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells 1 have been identified as potential biomarkers for vascular dementia,as both are closely linked to cognitive decline.Although effective clinical treatments for myelin damage in the central nervous system are currently lacking,researchers are actively working to develop targeted therapies.Several drugs,including nimodipine,dopaminergic agents,simvastatin,biotin,and quetiapine,have been evaluated for clinical use in treating microglial and myelin damage.Future research will face challenges in developing targeted therapeutic strategies for vascular dementia,requiring further investigation into the timing,duration,and specific mechanisms of microglial activation,as well as the exploration of new drug combinations and additional therapeutic targets.
基金supported by Craig H.Neilsen Foundation,Wings for Life Foundation,Canadian Institutes of Health Research,and Fonds de Recherche Québec-Santé(to FB).
文摘Spinal cord injury(SCI)interrupts the flow of information between the brain and the spinal cord,thus leading to a loss of sensory information and motor paralysis of the body below the lesion.Surprisingly,most SCIs are incomplete and spare supraspinal pathways,especially those located within the peripheral white matter of the spinal cord,which includes reticulospinal pathways originating from the medullary reticular formation.Whereas there is abundant literature about the motor cortex,its corticospinal pathway,and its capacity to modulate functional recovery after SCI,less is known about the medullary reticular formation and its reticulospinal pathway.
基金supported by grants from Guangdong Basic and Applied Basic Research Foundation,No.2021A1515110801(to SW)the National Natural Science Foundation of China,No.82301511(to SW)+1 种基金“Double First-Class”Construction Project of NPU,Nos.0515023GH0202320(to JC),0515023SH0201320(to JC)973 Program,No.2011CB504100(to JC).
文摘Myelination,the continuous ensheathment of neuronal axons,is a lifelong process in the nervous system that is essential for the precise,temporospatial conduction of action potentials between neurons.Myelin also provides intercellular metabolic support to axons.Even minor disruptions in the integrity of myelin can impair neural performance and increase susceptibility to neurological diseases.In fact,myelin degeneration is a well-known neuropathological condition that is associated with normal aging and several neurodegenerative diseases,including multiple sclerosis and Alzheimer’s disease.In the central nervous system,compact myelin sheaths are formed by fully mature oligodendrocytes.However,the entire oligodendrocyte lineage is susceptible to changes in the biological microenvironment and other risk factors that arise as the brain ages.In addition to their well-known role in action potential propagation,oligodendrocytes also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes.Therefore,myelin degeneration in the aging central nervous system is a significant contributor to the development of neurodegenerative diseases.Interventions that mitigate age-related myelin degeneration can improve neurological function in aging individuals.In this review,we investigate the changes in myelin that are associated with aging and their underlying mechanisms.We also discuss recent advances in understanding how myelin degeneration in the aging brain contributes to neurodegenerative diseases and explore the factors that can prevent,slow down,or even reverse age-related myelin degeneration.Future research will enhance our understanding of how reducing age-related myelin degeneration can be used as a therapeutic target for delaying or preventing neurodegenerative diseases.
基金supported by the Qingdao Medical Health Research Project,No.2023-WJZD212(to XX)。
文摘Recent evidence suggests that ferroptosis plays a crucial role in the occurrence and development of white matter lesions.However,the mechanisms and regulatory pathways involved in ferroptosis within white matter lesions remain unclear.Long non-coding RNAs(lnc RNAs)have been shown to influence the occurrence and development of these lesions.We previously identified lnc_011797 as a biomarker of white matter lesions by high-throughput sequencing.To investigate the mechanism by which lnc_011797 regulates white matter lesions,we established subjected human umbilical vein endothelial cells to oxygenglucose deprivation to simulate conditions associated with white matter lesions.The cells were transfected with lnc_011797 overexpression or knockdown lentiviruses.Our findings indicate that lnc_011797 promoted ferroptosis in these cells,leading to the formation of white matter lesions.Furthermore,lnc_011797 functioned as a competitive endogenous RNA(ce RNA)for mi R-193b-3p,thereby regulating the expression of WNK1 and its downstream ferroptosis-related proteins.To validate the role of lnc_011797 in vivo,we established a mouse model of white matter lesions through bilateral common carotid artery stenosis.The results from this model confirmed that lnc_011797 regulates ferroptosis via WNK1 and promotes the development of white matter lesions.These findings clarify the mechanism by which lnc RNAs regulate white matter lesions,providing a new target for the diagnosis and treatment of white matter lesions.
基金financially supported by the Key Research and Development Program of Hubei Province(No.2022BCA082 and No.2022BEC013).
文摘The presence of impurities in phosphogypsum has long impeded its effective utilization,highlighting the need for energy-efficient and sustainable purification methods.This study proposes a novel purification strategy that synergistically combines pH regulation and micelle-assisted treatment to create an optimized microenvironment for impurity removal.Under mechanical grinding conditions,this approach enhances the rheological properties of the phosphogypsumslurries and facilitates the dissolution and removal of impurity ions.Experimental results demonstrate that the synergistic method achieves a remarkable 64.01%increase in whiteness while significantly reducing soluble phosphorus and fluoride content in a single-step process.This technique not only achieves high purification efficiency but also offers a practical pathway for the high-value utilization of phosphogypsum.These findings suggest that this method has substantial potential for enhancing sustainable resource management and enabling broader industrial applications of purified phosphogypsum.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2022MH124the Youth Science Foundation of Shandong First Medical University,No.202201–105(both to YX)。
文摘Subarachnoid hemorrhage leads to a series of pathological changes,including vascular spasm,cellular apoptosis,blood–brain barrier damage,cerebral edema,and white matter injury.Microglia,which are the key immune cells in the central nervous system,maintain homeostasis in the neural environment,support neurons,mediate apoptosis,participate in immune regulation,and have neuroprotective effects.Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage.Moreover,microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage.Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury.This provides new targets and ideas for the treatment of subarachnoid hemorrhage.However,an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking.This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm,neuroinflammation,neuronal apoptosis,blood–brain barrier disruption,cerebral edema,and cerebral white matter lesions.It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage.Currently,microglia in subarachnoid hemorrhage are targeted with TLR inhibitors,nuclear factor-κB and STAT3 pathway inhibitors,glycine/tyrosine kinases,NLRP3 signaling pathway inhibitors,Gasdermin D inhibitors,vincristine receptorαreceptor agonists,ferroptosis inhibitors,genetic modification techniques,stem cell therapies,and traditional Chinese medicine.However,most of these are still being evaluated at the laboratory stage.More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
基金funded with National Key R&D Program of China(2022YFC2405904)National Natural Science Foundation of China(11932012,and 32171348).
文摘Enamel demineralization,the formation of white spot lesions,is a common issue in clinical orthodontic treatment.The appearance of white spot lesions not only affects the texture and health of dental hard tissues but also impacts the health and aesthetics of teeth after orthodontic treatment.The prevention,diagnosis,and treatment of white spot lesions that occur throughout the orthodontic treatment process involve multiple dental specialties.This expert consensus will focus on providing guiding opinions on the management and prevention of white spot lesions during orthodontic treatment,advocating for proactive prevention,early detection,timely treatment,scientific follow-up,and multidisciplinary management of white spot lesions throughout the orthodontic process,thereby maintaining the dental health of patients during orthodontic treatment.
文摘With the advancement of astronomical observation technology,people have a deeper understanding of the formation and evolution of galaxies,but many details of our own Milky Way and other external galaxies are still unknown.Therefore,by studying the formation and orbital transformation mechanism of satellites,planets and stars,the author puts forward a new theory on the formation and evolution of stars and galaxies,thus revealing the hierarchical structure of galaxies and the formation and evolution laws of main sequence stars,red giants,white dwarfs,black dwarfs,supernovae,neutron stars,black holes and quasars.Some special phenomena in the course of star formation and evolution,such as sunspots,flares,fast radio bursts and gamma-ray bursts,have also been revealed.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC0720)Research Center for the Development of the Comprehensive Health Industry and Rural Revitalization of Sichuan TCM(No.DJKYB202306)State Administration of Traditional Chinese Medicine of Sichuan Province of China(No.2020HJZX001).
文摘Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxylum bungeanum,which promotes the management of obesity by triggering the browning of white adipose tissue(WAT)targeting the membrane receptor of transient receptor potential vanilloid 1(TRPV1).However,HAS easily undergoes configuration transformation and oxidative degradation.The short peptide CKGGRAKDC or adipose-targeting sequence(ATS)binds specifically to prohibitin on the surface of WAT cells and can be used as recognition assembly to enhance adipocyte targetability.Furthermore,mesoporous silica nanoparticles(MSNs)are widely used in drug delivery systems because of their large specific surface area and pore volume.Therefore,HAS-loaded adipose-targeted MSNs(MSNs-ATS)were developed to enhance the adipocyte targetability,safety,and efficacy of HAS,and tested on mature 3T3-L1 cells and obese mouse models.MSNs-ATS showed higher specificity for adipocyte targetability without obvious toxicity.HAS-loaded MSNs-ATS showed anti-obesity effects superior to those of HAS alone.In conclusion,we successfully developed adipocyte-targeted,HAS-loaded MSNs with good safety and anti-obesity effects.
文摘As the population ages,the burden of age-related diseases becomes greater.Currently,over 55 million people suffer from dementia worldwide,with Alzheimer’s disease being the most common form.However,it is becoming clearer that underlying vascular pathology such as cerebral small vessel disease(cSVD)may be a more detrimental cause for dementia(Cuadrado-Godia et al.,2018).It is estimated that 10%-30%of the elderly population and 35%-90%of all dementia patients exhibit signs of cSVD.The term cSVD refers to pathology affecting the small vessels of the brain,which can lead to lacunar cerebral infarcts,enlarged perivascular spaces,and cortical hemorrhages(Cuadrado-Godia et al.,2018).CSVD is often associated with cognitive decline,gait problems,and dementia(Cuadrado-Godia et al.,2018).
文摘The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs based on M-EMLs separated by polyethyleneimine ethoxylated(PEIE)layer with different stacking sequences of blue(B),green(G),and red(R)QDs layer were used to intuitively explore the injection,transportation and recombination processes of the charge carriers in QLEDs by using the time-resolved electroluminescence(TrEL)spectra.From the TrEL spectra mea-surements,green and red emissions were obtained first in the QLEDs with the EMLs sequences of G/PEIE/B/PEIE/R and B/PEIE/R/PEIE/G along the direction of light emission,respectively.While the QLEDs adopt EMLs sequences of B/PEIE/G/PEIE/R,the blue,green and red emissions were obtained nearly at the same time.The above phenomenon can be attributed to different charge carrier transmission and radiation recombination process in the EMLs due to different valence band offsets and conduction band offsets between R-,G-and B-QDs by using different sequences of EMLs.White emission with coordi-nates of(0.31,0.31)and correlated color temperature(CCT)of 5916 K was obtained in the QLEDs with the EMLs se-quences of B/PEIE/G/PEIE/R,which can be attributed to the relative uniform emission of B-,G-and R-QDs due to the effec-tive injection and radiation recombination of charge carriers in each of the EMLs.The above results have great significance for further understanding and improving the performance of QLEDs with M-EMLs.
文摘To further understand the performance of the energy harvesters under the influence of the wind force and the random excitation,this paper investigates the stochastic response of the bio-inspired energy harvesters subjected to Gaussian white noise and galloping excitation,simulating the flapping pattern of a seagull and its interaction with wind force.The equivalent linearization method is utilized to convert the original nonlinear model into the Itôstochastic differential equation by minimizing the mean squared error.Then,the second-order steady-state moments about the displacement,velocity,and voltage are derived by combining the moment analysis theory.The theoretical results are simulated numerically to analyze the stochastic response performance under different noise intensities,wind speeds,stiffness coefficients,and electromechanical coupling coefficients,time domain analysis is also conducted to study the performance of the harvester with different parameters.The results reveal that the mean square displacement and voltage increase with increasing the noise intensity and wind speed,larger absolute values of stiffness coefficient correspond to smaller mean square displacement and voltage,and larger electromechanical coupling coefficients can enhance the mean square voltage.Finally,the influence of wind speed and electromechanical coupling coefficient on the stationary probability density function(SPDF)is investigated,revealing the existence of a bimodal distribution under varying environmental conditions.
文摘I shall deserve the Reputation of having beene ye first to lay the grounds of two Sciences,"wrote Thomas Hobbes in 1646,"this of Optiques and yt other of natural Justice."For him,optics and politics were two prongs of the same effort:to naturalize humans’relations to their world and to each other.It was Descartes’Dioptrique,handed to him by Kenelm Digby in 1637,that cleared for him the path:naturalizing humans required physicalizing vision–as Kepler taught in his own optics–and removing from nature of all cognitive entities such as"species visible and intelligible."Between 1639 and 1646 Hobbes produced three professional,innovative treatises on optics founded upon"the opinion of the excellent Monsieur Des Cartes"but,finally,diverging from it in the most crucial point.For Descartes,ridding"Matter[of all]such Descriptions…as belong but to Spiritual Beings"required a spiritual,non-material entity to interpret the physical effects of the senses.Hobbes,however,insisted that the interpretation can and should be understood physically and mechanically,for"Vision is the judgement itself.
文摘Representatives from nearly 50 countries and regions share their thoughts on how to correct development imbalances and protect people’s rights in all areas.YUCUN,a small village in Zhejiang Province,is known for its beautiful scenery,with white egrets flying in a blue sky and mandarin fish jumping out of the clear water of its lakes and rivers.The houses are equally picturesque,dainty three-storied villas with white walls and black tiles.
文摘Multiple evanescent white dot syndrome(MEWDS)is an inflammatory fundus disease primarily affecting the outer retina.It is characterized by transient yellow-white dots on the outer retina.Although the exact pathogenesis remains unclear,the progress in multimodal imaging(MMI)has enhanced our understanding of MEWDS.Most cases of MEWDS are idiopathic,lacking a definite cause,and can spontaneously recover;these are what we term classic MEWDS.Consequently,MEWDS is often referred to as the“common cold of the retina”.Simultaneously,patients with other disorders may present with varying degrees of manifestations similar to MEWDS.The resemblance in clinical or imaging findings can lead to misdiagnosis and inappropriate treatment.These MEWDS-like presentations are actually caused by other systemic or ocular disorders with diverse mechanisms.Thus,they differ from classic MEWDS in certain aspects.Using the keywords“MEWDSlike”and“Secondary MEWDS”,we searched for all relevant studies published in the PubMed database from January 2021 to January 2024.Subsequently,we retrospectively summarized the clinical and imaging characteristics of MEWDS,along with the manifestations in other diseases that resembled those of MEWDS,and compared classic MEWDS with these similar presentations.Based on our review,we classified such similar presentations under other conditions into two categories and summarized their features for differential diagnosis.We recommend paying close attention to patients suspected of having MEWDS,as there may be more serious systemic or ocular disorders that require prompt treatment.