MXene-based smart contact lenses demonstrate a cutting-edge advancement in wearable ophthalmic technology,combining real-time biosensing,therapeutic capabilities,and user comfort in a single platform.These devices tak...MXene-based smart contact lenses demonstrate a cutting-edge advancement in wearable ophthalmic technology,combining real-time biosensing,therapeutic capabilities,and user comfort in a single platform.These devices take the advantage of the exceptional electrical conductivity,mechanical flexibility,and biocompatibility of two-dimensional MXenes to enable noninvasive,tear-based monitoring of key physiological markers such as intraocular pressure and glucose levels.Recent developments focus on the integration of transparent MXene films into the conventional lens materials,allowing multifunctional performance including photothermal therapy,antimicrobial and anti-inflammation protection,and dehydration resistance.These innovations offer promising strategies for ocular disease management and eye protection.In addition to their multifunctionality,improvements in MXene synthesis and device engineering have enhanced the stability,transparency,and wearability of these lenses.Despite these advances,challenges remain in long-term biostability,scalable production,and integration with wireless communication systems.This review summarizes the current progress,key challenges,and future directions of MXene-based smart contact lenses,highlighting their transformative potential in next-generation digital healthcare and ophthalmic care.展开更多
The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conduct...The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conductive yarn(FCB@SY)featuring a controllable microcrack structure is developed via a synergistic approach combining ultrasonic swelling and non-solvent induced phase separation(NIPS).By embedding a robust conductive network and engineering microcrack morphology,the resulting sensor achieves an ultrahigh gauge factor(GF≈12,670),an ultrabroad working range(0%-547%),a low detection limit(0.5%),rapid response/recovery time(140 ms/140 ms),and outstanding durability over 10,000 cycles.Furthermore,the hydrophobic surface endowed by conductive coatings imparts exceptional chemical stability against acidic and alkaline environments,as well as reliable waterproof performance.This enables consistent functionality under harsh conditions,including underwater operation.Integrated with machine learning algorithms,the FCB@SY-based intelligent sensing system demonstrates dualmode capabilities in human motion tracking and gesture recognition,offering significant potential for applications in wearable electronics,human-machine interfaces,and soft robotics.展开更多
Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,pie...Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,piezoelectric composites,biodegradable polymers)and conformable designs to enable stable integration with dynamic anatomical surfaces.Key innovations include ultrasound-enhanced drug delivery through cavitation-mediated transdermal penetration,accelerated tissue regeneration via mechanical and electrical stimulation,and precise neuromodulation using focused acoustic waves.Recent developments demonstrate wireless operation,real-time monitoring,and closed-loop therapy,facilitated by energy-efficient transducers and AI-driven adaptive control.Despite progress,challenges persist in material durability,clinical validation,and scalable manufacturing.Future directions highlight the integration of nanomaterials,3D-printed architectures,and multimodal sensing for personalized medicine.This technology holds significant potential to redefine chronic disease management,postoperative recovery,and neurorehabilitation,bridging the gap between clinical and home-based care.展开更多
The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activit...The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of daily life. Wearables are applied in research, clinical practice, and as lifestyle devices;most obvious, they promise to be a key element for increasing human physical activity, one of the biggest health challenges nowadays.展开更多
Introduction:Consumer wearables increasingly provide users with Composite Health Scores(CHS)–integrated biometric indices that claim to quantify readiness,recovery,stress,or overall well-being.Despite their growing a...Introduction:Consumer wearables increasingly provide users with Composite Health Scores(CHS)–integrated biometric indices that claim to quantify readiness,recovery,stress,or overall well-being.Despite their growing adoption,the validity,transparency,and physiological relevance of these scores remain unclear.This study systematically evaluates CHS fromleading wearablemanufacturers to assess their underlying methodologies,contributors,and scientific basis.Content:Information was synthesised from publicly available company documentation,including technical white papers,user manuals,app interfaces,and research literature where available.We identified 14 CHS across 10 major wearable manufacturers,including Fitbit(Daily Readiness),Garmin(Body Battery^(TM)and Training Readiness),Oura(Readiness and Resilience),WHOOP(Strain,Recovery,and Stress Monitor),Polar(Nightly Recharge^(TM)),Samsung(Energy Score),Suunto(Body Resources),Ultrahuman(Dynamic Recovery),Coros(Daily Stress),and Withings(Health Improvement Score).The most frequently incorporated biometric contributors in this catalogue of CHS were heart rate variability(86%),resting heart rate(79%),physical activity(71%),and sleep duration(71%).However,significant discrepancies were identified in data collection timeframes,metric weighting,and proprietary scoring methodologies.None of the manufacturers disclosed their exact algorithmic formulas,and few provided empirical validation or peer-reviewed evidence supporting the accuracy or clinical relevance of their scores.Summary and outlook:While the concept of CHS represent a promising innovation in digital health,their scientific validity,transparency,and clinical applicability remain uncertain.Future research should focus on establishing standardized sensor fusion frameworks,improving algorithmic transparency,and evaluating CHS across diverse populations.Greater collaboration between industry,researchers,and clinicians is essential to ensure these indices serve as meaningful health metrics rather than opaque consumer tools.展开更多
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over...The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.展开更多
Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance ...Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance wearable sensors to offer prompt feedback.Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously,which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.Therefore,improving materials and analysis system accuracy is essential.This article introduces the first example of a flexible array capable of detecting pyocyanin,a bacterial virulence factor,while correcting dynamic pH fluctuations.We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response.Customized screen-printable inks were developed to enhance analytical performance.The analytical performances of two sensitive sensor systems(i.e.,fully-printed porous graphene/multiwalled carbon nanotube(CNT)and polyaniline/CNT composites for pyocyanin and pH sensors)are evaluated.Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids.This sensitive and effective strategy shows potential for personalized applications due to its affordability,ease of use,and ability to adjust for dynamic pH changes.展开更多
Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the pro...Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication.展开更多
In this study,we presented a wearable electrochemical sensor for accurate and reliable cortisol detection in sweat.The sensor was built upon a novel platform by combination of conducting polyaniline(PANI)hydrogel and ...In this study,we presented a wearable electrochemical sensor for accurate and reliable cortisol detection in sweat.The sensor was built upon a novel platform by combination of conducting polyaniline(PANI)hydrogel and hydrophilic polypeptides,endowing the sensor with superior antifouling property.PANI hydrogel's distinctive water storage characteristic and the attachment of numerous antifouling peptides(Pep)effectively prevent nonspecific adsorption in complex human sweat environment.This innovative configuration significantly enhanced the accuracy of cortisol detection in complex sweat samples.The prepared biosensor was able to achieve reliable cortisol detection in both buffer solution and artificial sweat,covering a detection concentration range from 10^(-10)to 10^(-6)g/m L,with the minimum detection limitation of 33 pg/m L.And this electrochemical biosensor demonstrated outstanding selectivity,excellent stability,and good reproducibility.Notably,the cortisol levels were measured in volunteers during both morning and evening.The observed data exhibited distinct circadian rhythm,consistenting with the results gained from commercially available enzyme-linked immunosorption(ELISA)kit.This wearable biosensor shows giant potential for monitoring cortisol levels in human sweat,enabling real-time evaluation for mental and stress state.展开更多
Hydrogel strain sensors represent an importan development for research into flexible electronics,being able to convert external stimuli into easily monitored electrical signals.However,finding simple and rapid prepara...Hydrogel strain sensors represent an importan development for research into flexible electronics,being able to convert external stimuli into easily monitored electrical signals.However,finding simple and rapid preparation methods,as well as ensuring compatibility between conductive fillers and the polymer matrix are stil the main challenges for conductive hydrogel applications In this work,we utilize MXene to coat liquid metal dro plets that have been broken by ultrasound while incorpo rating cellulose nanofibers to make them stably dispersed Electron paramagnetic resonance spectroscopy revealed that the obtained composite filler could catalyze the releas of additional hydroxyl radicals from ammonium persulfat to enable the rapid gelation of acrylic acid under ambien conditions.This unique property allows for the mold-based fabrication of hydrogels in various shapes,and we also explored the use of microfluidic devices for printing.Th conductive hydrogels showed good tensile properties small hysteresis loops,high self-healing efficiency(97%conductive recovery),and antimicrobial properties.When assembled into flexible sensors,the hydrogel can accu rately monitor body movements with stable repeatability The outstanding characteristics of the hydrogel not only offer a material basis for the development of novel flexibl sensors,but also have the potential for rapid,large-scale and customized preparation through fast gelation.展开更多
Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a...Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a solution to the increasing severity of extreme climate-change.Inspired by autologous temperature-regulation and multidimensional-sensing origins of nature-skin composed of nature collagen fibers,this study engineered a nanoscale wearable natural fibers-derived thermochromic material(TMEH-skin)for robust all-season self-adapting thermal management by tactically integrating traditional immersion and spraying methods with layer-by-layer stacking-strategy.Because of the on-demand multi-functional layer-structure design,TMEH-skin achieves spontaneous~38.16%visible lightmodulation and~95.1%infrared-emission,demonstrating outstanding double-self-switching thermal management origins by simple color-changing without additional energy-input.Moreover,TMEH-skin has gratifying tensile strength of 13.18 MPa,water vapor permeability,electrical-conductivity,and hydrophobicity,further broadening the application potential and scenarios as wearable materials.In applications for military-missions or reconnaissance behind enemy-lines,TMEH-skin robustly integrates the multi-functionalities of wearing-comfort,physiological signal-response capability for accurate transmission of Morse-code,and thermal management performances under special circumstances,indicating its tremendous potential for smart military-applications.Simulation results show that TMEH-skin has prominent energy-saving efficiency in cities with different climate zones.This study provides a new reference to the booming innovation of natural-derived wearable materials for all-seasonal self-adapting thermal management.展开更多
Traditional hydrogels are inevitably damaged during practical applications,resulting in a gradual deterioration of their functional efficacy.A primary strategy to address this issue involves developing hydrogels with ...Traditional hydrogels are inevitably damaged during practical applications,resulting in a gradual deterioration of their functional efficacy.A primary strategy to address this issue involves developing hydrogels with inherent self-healing properties.In this study,we report the synthesis of self-healing polyacrylate hydrogels that integrate zwitterions,hydrophilic nano-silica and aluminum ions.Due to the synergistic effect of multiple hydrogen bonds,coordination bonds and electrostatic interactions,the tensile strength of the hydrogel is enhanced from 15.1 to 162.6 kPa.Moreover,the electrical resistance and tensile strength of the hydrogel can almost recover to its initial values after 20 min of healing at room temperature,exhibiting remarkable self-healing performance.Furthermore,the zwitterionic polyacrylate hydrogel serves as a wearable sensor with the capability of accurately response to the bending and stretching of human joints,exhibting a gauge factor of 1.87 under tensile strain ranging from 80% to 100%.Even after being freezed at-20℃ for 3 h,the zwitterionic polyacrylate hydrogel retains its exceptional writing performance.In conclusion,the hydrogels developed in this study demonstrate significant potential for wearable electronics applications.展开更多
Wearable electronic textiles(e-textiles)with embedded electronics offer promising solutions for unobtrusive,real-time health monitoring,enhancing healthcare efficiency.However,their adoption is limited by performance ...Wearable electronic textiles(e-textiles)with embedded electronics offer promising solutions for unobtrusive,real-time health monitoring,enhancing healthcare efficiency.However,their adoption is limited by performance and sustainability challenges in materials,manufacturing,and recycling.This study introduces a sustainable paradigm for the fabrication of fully inkjet-printed Smart,Wearable,and Eco-friendly Electronic Textiles(SWEET)with the first comprehensive assessments of the biodegradability and life cycle assessment(LCA).SWEET addresses existing limitations,enabling concurrent and continuous monitoring of human physiology,including skin surface temperature(at temperature coefficient of resistance,TCR value of~-4.4%℃^(-1))and heart rate(-74 beats per minute,bpm)separately and simultaneously like the industry gold standard,using consistent,versatile,and highly efficient inkjet-printed graphene and Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)-based wearable e-textiles.Demonstrations with a wearable garment on five human participants confirm the system’s capability to monitor their electrocardiogram(ECG)signals and skin temperature.Such sustainable and biodegradable e-textiles decompose by-48%in weight and lost-98%strength over 4months.Life cycle assessment(LCA)reveals that the graphene-based electrode has the lowest climate change impact of-0.037 kg CO_(2) eq,40 times lower than reference electrodes.This approach addresses material and manufacturing challenges,while aligning with environmental responsibility,marking a significant leap forward in sustainable e-textile technology for personalized healthcare management.展开更多
Wearable bioelectronic devices are rapidly evolving towards miniaturization and multifunctionality,with remarkable features such as flexibility and comfort.However,achieving a sustainable power supply for wearable bio...Wearable bioelectronic devices are rapidly evolving towards miniaturization and multifunctionality,with remarkable features such as flexibility and comfort.However,achieving a sustainable power supply for wearable bioelectronic devices is still a great challenge.Triboelectric nanogenerators(TENGs)provide an efficient solution by converting irregular,low-frequency bioenergy from the human body into electrical energy.Beyond sustainably powering wearable bioelectronics,the harvested electrical energy also carries rich information for human body sensing.In this conversion process,the choice of material plays a crucial role in affecting the output performance of the TENGs.Among various materials,silicone rubber(SR)stands out due to its exceptional plasticity,flexibility,comfortability and other favorable properties.Moreover,with appropriate treatment,SR can achieve extreme functionalities such as high robustness,good stability,self-healing capabilities,rapid response,and more.In this review,recent advances in wearable SR-based TENGs(SR-TENGs)are systematically reviewed with a focus on their application in different parts of the human body.Given that the manufacturing method of SR-TENGs largely determines its output performance and sensitivity,this paper introduces the design of SR-TENGs,including material selection,process modulation,and structure optimization.Additionally,this article discusses the current challenges in the SR-TENG fabrication technology and potential future directions,aiming to promote the effective development of SR-TENGs in biomechanical energy harvesting and self-powered sensing applications.展开更多
Textiles for health and sporting activity monitoring are on the rise with the advent of smart portable wearables.The intention of this work is to design wireless monitoring wearables,based on widely available textiles...Textiles for health and sporting activity monitoring are on the rise with the advent of smart portable wearables.The intention of this work is to design wireless monitoring wearables,based on widely available textiles and low environmental impact production technologies.Herein we have developed a polymeric ink which is able to functionalize different types of textile fibers(including silver conducting fibers,cotton,and commercial textile)with poly pyrrole.These fibers were weaved together with a thinner silver conducting fiber and carbon fiber to form a touch-sensitive energy harvesting system that would generate an electric output when mechanical pressure is applied to it.Different prototypes were manufactured with loom weaving accessories to simulate real textile cloths.By simple touch,the prototypes produced a maximum voltage of 244 V and a maximum power density of 2.29 W m^(-2).The current generated is then transformed into a digital signal,which is further utilized for human motion or gesture monitorization.The system comprises a wireless block for the Internet of Things(IoT)applicability that will be eventually extended to future remote health and sports monitoring systems.展开更多
Self-charging power systems are required for wearable electronic devices to provide energy supply.However,low charging efficiency,complex preparation process and poor wearability limit its application.Herein,a highly ...Self-charging power systems are required for wearable electronic devices to provide energy supply.However,low charging efficiency,complex preparation process and poor wearability limit its application.Herein,a highly efficient,wearable self-charging power system is reported,which consists of a triboelectric nanogenerator(TENG)with fabric coated by MXene paste as conductive layer and micro-supercapacitors(MSCs)with graphene films as electrode.The conductive layer of TENG was prepared by dip-spin coating MXene paste on cotton fabric.The electrodes of MSCs were made by mask-assisted vacuum filtration of graphene solution.The TENG conductive layer and MSCs electrodes with electrolyte were encapsulated by two identical silicone rubbers.The silicon rubbers work as triboelectric layer of the TENG as well as the protective layers of the self-charging power system.The cotton fabrics and silicon rubbers provide strength and flexibility for the system.The MXene paste on cotton fabrics provides excellent energy harvesting ability of TENG due to high conductivity and high charge trapping ability.The TENG can harvest the energy of pressing by a palm.After 147 s of continually pressing/releasing cycles,the collected energy can charge 2 series-connected MSCs array to 1.6 V,which can power an electronic watch for 25 s.Compared with similar systems,this self-charging system was constructed by a simple method from low cost starting materials and exhibits ultra-high performance.The research provides an easy and economical solution of self-charge system for wearable electronic devices.展开更多
Graphene fiber supercapacitors(GFSCs)have garnered significant attention due to their exceptional features,including high power density,rapid charge/discharge rates,prolonged cycling durability,and versatile weaving c...Graphene fiber supercapacitors(GFSCs)have garnered significant attention due to their exceptional features,including high power density,rapid charge/discharge rates,prolonged cycling durability,and versatile weaving capabilities.Nevertheless,inherent challenges in graphene fibers(GFs),particularly the restricted ion-accessible specific surface area(SSA)and sluggish ion transport kinetics,hinder the achievement of optimal capacitance and rate performance.Despite existing reviews on GFSCs,a notable gap exists in thoroughly exploring the kinetics governing the energy storage process in GFSCs.This review aims to address this gap by thoroughly analyzing the energy storage mechanism,fabrication methodologies,property manipulation,and wearable applications of GFSCs.Through theoretical analysis of the energy storage process,specific parameters in advanced GF fabrication methodologies are carefully summarized,which can be used to modulate nano/micro-structures,thereby enhancing energy storage kinetics.In particular,enhanced ion storage is realized by creating more ion-accessible SSA and introducing extra-capacitive components,while accelerated ion transport is achieved by shortening the transport channel length and improving the accessibility of electrolyte ions.Building on the established structure-property relationship,several critical strategies for constructing optimal surface and structure profiles of GF electrodes are summarized.Capitalizing on the exceptional flexibility and wearability of GFSCs,the review further underscores their potential as foundational elements for constructing multifunctional e-textiles using conventional textile technologies.In conclusion,this review provides insights into current challenges and suggests potential research directions for GFSCs.展开更多
Wearable electronics incorporating proteins for biocompatibility have garnered significant research attention,given their potential applications in biocompatible medical devices,artificial skin,humanoid robots,and oth...Wearable electronics incorporating proteins for biocompatibility have garnered significant research attention,given their potential applications in biocompatible medical devices,artificial skin,humanoid robots,and other fields.However,a notable challenge exists,as many wearable electronics currently lack those essential properties due to issues such as non-biological compatibility,as well as insufficient mechanical and conductive performance.Here,we have developed a hybrid keratin(KE)hydrogel by incorporating a liquid metal(LM,eutectic gallium-indium alloy)to design a wearable electronic device with excellent biocompatibility,enhanced conductivity,and good mechanical properties.The resulting keratin liquid metal(KELM)hydrogel demonstrates favorable mechanical characteristics,including good tensile strength(166 kPa),impressive stretchability(2600%),and long-term stability.Furthermore,it exhibits good conductivity(6.84 S·m^(-1))and sensitivity as a sensing material(gauge factor(GF)=7.03),rendering it suitable for constructing high-performance strain sensors.Notably,the KELM hydrogel-based wearable electronics extend their functionality to monitoring marine inhabitants'health.This innovative application provides new insights for designing the next generation of biomimetic electronic devices,with potential applications in human-machine interfaces,electronic skin,artificial intelligence,and health monitoring.展开更多
Yongtao Yu,Yuelin Yu et al.Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors.Energy Environ.Mater.2024,7,e12700.On page 4 of this article,the first paragraph of 2.4,...Yongtao Yu,Yuelin Yu et al.Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors.Energy Environ.Mater.2024,7,e12700.On page 4 of this article,the first paragraph of 2.4,line 14(PDF version,same below),there is a spelling mistake of“sui,”.It should be changed to“suitable”.The denominator“dt”in the Equation(3)should be changed to“dt”.展开更多
The various bioacoustics signals obtained with auscultation contain complex clinical information that has been traditionally used as biomarkers,however,they are not extensively used in clinical studies owing to their ...The various bioacoustics signals obtained with auscultation contain complex clinical information that has been traditionally used as biomarkers,however,they are not extensively used in clinical studies owing to their spatiotemporal limitations.In this study,we developed a wearable stethoscope for wireless,skinattachable,low-power,continuous,real-time auscultation using a lung-sound-monitoring-patch(LSMP).LSMP can monitor respiratory function through a mobile app and classify normal and adventitious breathing by comparing their unique acoustic characteristics.The human heart and breathing sounds from humans can be distinguished from complex sound signals consisting of a mixture of bioacoustic signals and external noise.The performance of the LSMP sensor was further demonstrated in pediatric patients with asthma and elderly chronic obstructive pulmonary disease(COPD)patients where wheezing sounds were classified at specific frequencies.In addition,we developed a novel method for counting wheezing events based on a two-dimensional convolutional neural network deep-learning model constructed de novo and trained with our augmented fundamental lung-sound data set.We implemented a counting algorithm to identify wheezing events in real-time regardless of the respiratory cycle.The artificial intelligence-based adventitious breathing event counter distinguished>80%of the events(especially wheezing)in long-term clinical applications in patients with COPD.展开更多
文摘MXene-based smart contact lenses demonstrate a cutting-edge advancement in wearable ophthalmic technology,combining real-time biosensing,therapeutic capabilities,and user comfort in a single platform.These devices take the advantage of the exceptional electrical conductivity,mechanical flexibility,and biocompatibility of two-dimensional MXenes to enable noninvasive,tear-based monitoring of key physiological markers such as intraocular pressure and glucose levels.Recent developments focus on the integration of transparent MXene films into the conventional lens materials,allowing multifunctional performance including photothermal therapy,antimicrobial and anti-inflammation protection,and dehydration resistance.These innovations offer promising strategies for ocular disease management and eye protection.In addition to their multifunctionality,improvements in MXene synthesis and device engineering have enhanced the stability,transparency,and wearability of these lenses.Despite these advances,challenges remain in long-term biostability,scalable production,and integration with wireless communication systems.This review summarizes the current progress,key challenges,and future directions of MXene-based smart contact lenses,highlighting their transformative potential in next-generation digital healthcare and ophthalmic care.
基金the financial support of this work by the National Natural Science Foundation of China(No.52373093)Excellent Youth Found of Natural Science Foundation of Henan Province(No.242300421062)+1 种基金Central Plains Youth Top notch Talent Program of Henan Provincethe 111 project(No.D18023).
文摘The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conductive yarn(FCB@SY)featuring a controllable microcrack structure is developed via a synergistic approach combining ultrasonic swelling and non-solvent induced phase separation(NIPS).By embedding a robust conductive network and engineering microcrack morphology,the resulting sensor achieves an ultrahigh gauge factor(GF≈12,670),an ultrabroad working range(0%-547%),a low detection limit(0.5%),rapid response/recovery time(140 ms/140 ms),and outstanding durability over 10,000 cycles.Furthermore,the hydrophobic surface endowed by conductive coatings imparts exceptional chemical stability against acidic and alkaline environments,as well as reliable waterproof performance.This enables consistent functionality under harsh conditions,including underwater operation.Integrated with machine learning algorithms,the FCB@SY-based intelligent sensing system demonstrates dualmode capabilities in human motion tracking and gesture recognition,offering significant potential for applications in wearable electronics,human-machine interfaces,and soft robotics.
基金the support from the start-up of the University of Missouri-Columbia。
文摘Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,piezoelectric composites,biodegradable polymers)and conformable designs to enable stable integration with dynamic anatomical surfaces.Key innovations include ultrasound-enhanced drug delivery through cavitation-mediated transdermal penetration,accelerated tissue regeneration via mechanical and electrical stimulation,and precise neuromodulation using focused acoustic waves.Recent developments demonstrate wireless operation,real-time monitoring,and closed-loop therapy,facilitated by energy-efficient transducers and AI-driven adaptive control.Despite progress,challenges persist in material durability,clinical validation,and scalable manufacturing.Future directions highlight the integration of nanomaterials,3D-printed architectures,and multimodal sensing for personalized medicine.This technology holds significant potential to redefine chronic disease management,postoperative recovery,and neurorehabilitation,bridging the gap between clinical and home-based care.
基金funded in part by the German Research Foundation(Grant reference:496846758).
文摘The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of daily life. Wearables are applied in research, clinical practice, and as lifestyle devices;most obvious, they promise to be a key element for increasing human physical activity, one of the biggest health challenges nowadays.
基金funded by the Health Research Board in Ireland(Grant ID:HRB ILP-PHR-2024-005)Research Ireland(Grant ID:12/RC/2289_P2).
文摘Introduction:Consumer wearables increasingly provide users with Composite Health Scores(CHS)–integrated biometric indices that claim to quantify readiness,recovery,stress,or overall well-being.Despite their growing adoption,the validity,transparency,and physiological relevance of these scores remain unclear.This study systematically evaluates CHS fromleading wearablemanufacturers to assess their underlying methodologies,contributors,and scientific basis.Content:Information was synthesised from publicly available company documentation,including technical white papers,user manuals,app interfaces,and research literature where available.We identified 14 CHS across 10 major wearable manufacturers,including Fitbit(Daily Readiness),Garmin(Body Battery^(TM)and Training Readiness),Oura(Readiness and Resilience),WHOOP(Strain,Recovery,and Stress Monitor),Polar(Nightly Recharge^(TM)),Samsung(Energy Score),Suunto(Body Resources),Ultrahuman(Dynamic Recovery),Coros(Daily Stress),and Withings(Health Improvement Score).The most frequently incorporated biometric contributors in this catalogue of CHS were heart rate variability(86%),resting heart rate(79%),physical activity(71%),and sleep duration(71%).However,significant discrepancies were identified in data collection timeframes,metric weighting,and proprietary scoring methodologies.None of the manufacturers disclosed their exact algorithmic formulas,and few provided empirical validation or peer-reviewed evidence supporting the accuracy or clinical relevance of their scores.Summary and outlook:While the concept of CHS represent a promising innovation in digital health,their scientific validity,transparency,and clinical applicability remain uncertain.Future research should focus on establishing standardized sensor fusion frameworks,improving algorithmic transparency,and evaluating CHS across diverse populations.Greater collaboration between industry,researchers,and clinicians is essential to ensure these indices serve as meaningful health metrics rather than opaque consumer tools.
基金the support from the National Natural Science Foundation of China(22272004,62272041)the Fundamental Research Funds for the Central Universities(YWF-22-L-1256)+1 种基金the National Key R&D Program of China(2023YFC3402600)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1870011182126)。
文摘The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.
基金the Talent Management Project of Prince of Songkla University
文摘Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance wearable sensors to offer prompt feedback.Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously,which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.Therefore,improving materials and analysis system accuracy is essential.This article introduces the first example of a flexible array capable of detecting pyocyanin,a bacterial virulence factor,while correcting dynamic pH fluctuations.We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response.Customized screen-printable inks were developed to enhance analytical performance.The analytical performances of two sensitive sensor systems(i.e.,fully-printed porous graphene/multiwalled carbon nanotube(CNT)and polyaniline/CNT composites for pyocyanin and pH sensors)are evaluated.Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids.This sensitive and effective strategy shows potential for personalized applications due to its affordability,ease of use,and ability to adjust for dynamic pH changes.
基金supported by the Research Grant Fund from Kwangwoon University in 2023,the National Natural Science Foundation of China under Grant(62311540155)the Taishan Scholars Project Special Funds(tsqn202312035)the open research foundation of State Key Laboratory of Integrated Chips and Systems.
文摘Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication.
基金supported by the National Natural Science Foundation of China(Nos.22174082,22374085,22105113)the Key Research and Development Program of Shandong Province(No.2021ZDSYS30)Natural Science Foundation of Shandong Province,China(No.ZR2024QB059)。
文摘In this study,we presented a wearable electrochemical sensor for accurate and reliable cortisol detection in sweat.The sensor was built upon a novel platform by combination of conducting polyaniline(PANI)hydrogel and hydrophilic polypeptides,endowing the sensor with superior antifouling property.PANI hydrogel's distinctive water storage characteristic and the attachment of numerous antifouling peptides(Pep)effectively prevent nonspecific adsorption in complex human sweat environment.This innovative configuration significantly enhanced the accuracy of cortisol detection in complex sweat samples.The prepared biosensor was able to achieve reliable cortisol detection in both buffer solution and artificial sweat,covering a detection concentration range from 10^(-10)to 10^(-6)g/m L,with the minimum detection limitation of 33 pg/m L.And this electrochemical biosensor demonstrated outstanding selectivity,excellent stability,and good reproducibility.Notably,the cortisol levels were measured in volunteers during both morning and evening.The observed data exhibited distinct circadian rhythm,consistenting with the results gained from commercially available enzyme-linked immunosorption(ELISA)kit.This wearable biosensor shows giant potential for monitoring cortisol levels in human sweat,enabling real-time evaluation for mental and stress state.
基金financially supported by China Scholarship Council program(No.202306380028)the National Natural Science Foundation of China(No.11204097)+3 种基金the Spanish Ministry of Science(Nos.RYC2020-945030119-I and PID2023-151682NA-I00 funded by MCIN/AEI/10.13039/501100011033/and FEDER)Unidades de Excelencia Maria de Maeztu 2021(No.CEX2021-001202-M)the Spanish Ministry of Science,Innovation and Universities(MCIU),State Bureau of Investigation(AIE),the European Regional Development Fund(FEDER)(No.PGC2018-096958-B-I00)the Catalonian Government(No.2021 SGR00646)
文摘Hydrogel strain sensors represent an importan development for research into flexible electronics,being able to convert external stimuli into easily monitored electrical signals.However,finding simple and rapid preparation methods,as well as ensuring compatibility between conductive fillers and the polymer matrix are stil the main challenges for conductive hydrogel applications In this work,we utilize MXene to coat liquid metal dro plets that have been broken by ultrasound while incorpo rating cellulose nanofibers to make them stably dispersed Electron paramagnetic resonance spectroscopy revealed that the obtained composite filler could catalyze the releas of additional hydroxyl radicals from ammonium persulfat to enable the rapid gelation of acrylic acid under ambien conditions.This unique property allows for the mold-based fabrication of hydrogels in various shapes,and we also explored the use of microfluidic devices for printing.Th conductive hydrogels showed good tensile properties small hysteresis loops,high self-healing efficiency(97%conductive recovery),and antimicrobial properties.When assembled into flexible sensors,the hydrogel can accu rately monitor body movements with stable repeatability The outstanding characteristics of the hydrogel not only offer a material basis for the development of novel flexibl sensors,but also have the potential for rapid,large-scale and customized preparation through fast gelation.
基金the Institute of Biomass&Functional Materials of Shaanxi University of Science and Technology for funding this research workfinancially supported by the National Natural Science Foundation of China(2207081675,22278257,22308209)+1 种基金the Key R&D Program of Shaanxi Province(2024SF-YBXM-586)the Project of Innovation Capability Support Program in Shaanxi Province(2024ZC-KJXX-005)。
文摘Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a solution to the increasing severity of extreme climate-change.Inspired by autologous temperature-regulation and multidimensional-sensing origins of nature-skin composed of nature collagen fibers,this study engineered a nanoscale wearable natural fibers-derived thermochromic material(TMEH-skin)for robust all-season self-adapting thermal management by tactically integrating traditional immersion and spraying methods with layer-by-layer stacking-strategy.Because of the on-demand multi-functional layer-structure design,TMEH-skin achieves spontaneous~38.16%visible lightmodulation and~95.1%infrared-emission,demonstrating outstanding double-self-switching thermal management origins by simple color-changing without additional energy-input.Moreover,TMEH-skin has gratifying tensile strength of 13.18 MPa,water vapor permeability,electrical-conductivity,and hydrophobicity,further broadening the application potential and scenarios as wearable materials.In applications for military-missions or reconnaissance behind enemy-lines,TMEH-skin robustly integrates the multi-functionalities of wearing-comfort,physiological signal-response capability for accurate transmission of Morse-code,and thermal management performances under special circumstances,indicating its tremendous potential for smart military-applications.Simulation results show that TMEH-skin has prominent energy-saving efficiency in cities with different climate zones.This study provides a new reference to the booming innovation of natural-derived wearable materials for all-seasonal self-adapting thermal management.
基金financially supported by the National Key Research and Development Program of China(2022YFE0138900)the National Natural Science Foundation of China(21972017)+1 种基金the Fundamental Research Funds for the Central Universities of Ministry of Education of China(D5000240188)the"Scientific and Technical Innovation Action Plan"Basic Research Field of Shanghai Science and Technology Committee(19JC1410500)。
文摘Traditional hydrogels are inevitably damaged during practical applications,resulting in a gradual deterioration of their functional efficacy.A primary strategy to address this issue involves developing hydrogels with inherent self-healing properties.In this study,we report the synthesis of self-healing polyacrylate hydrogels that integrate zwitterions,hydrophilic nano-silica and aluminum ions.Due to the synergistic effect of multiple hydrogen bonds,coordination bonds and electrostatic interactions,the tensile strength of the hydrogel is enhanced from 15.1 to 162.6 kPa.Moreover,the electrical resistance and tensile strength of the hydrogel can almost recover to its initial values after 20 min of healing at room temperature,exhibiting remarkable self-healing performance.Furthermore,the zwitterionic polyacrylate hydrogel serves as a wearable sensor with the capability of accurately response to the bending and stretching of human joints,exhibting a gauge factor of 1.87 under tensile strain ranging from 80% to 100%.Even after being freezed at-20℃ for 3 h,the zwitterionic polyacrylate hydrogel retains its exceptional writing performance.In conclusion,the hydrogels developed in this study demonstrate significant potential for wearable electronics applications.
基金funding from Commonwealth Scholarship Commission(CSC)U.K.for a Ph.D.scholarship for Marzia DulalUKRI Research England the Expanding Excellence in England(E3)grant.
文摘Wearable electronic textiles(e-textiles)with embedded electronics offer promising solutions for unobtrusive,real-time health monitoring,enhancing healthcare efficiency.However,their adoption is limited by performance and sustainability challenges in materials,manufacturing,and recycling.This study introduces a sustainable paradigm for the fabrication of fully inkjet-printed Smart,Wearable,and Eco-friendly Electronic Textiles(SWEET)with the first comprehensive assessments of the biodegradability and life cycle assessment(LCA).SWEET addresses existing limitations,enabling concurrent and continuous monitoring of human physiology,including skin surface temperature(at temperature coefficient of resistance,TCR value of~-4.4%℃^(-1))and heart rate(-74 beats per minute,bpm)separately and simultaneously like the industry gold standard,using consistent,versatile,and highly efficient inkjet-printed graphene and Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)-based wearable e-textiles.Demonstrations with a wearable garment on five human participants confirm the system’s capability to monitor their electrocardiogram(ECG)signals and skin temperature.Such sustainable and biodegradable e-textiles decompose by-48%in weight and lost-98%strength over 4months.Life cycle assessment(LCA)reveals that the graphene-based electrode has the lowest climate change impact of-0.037 kg CO_(2) eq,40 times lower than reference electrodes.This approach addresses material and manufacturing challenges,while aligning with environmental responsibility,marking a significant leap forward in sustainable e-textile technology for personalized healthcare management.
基金supported by the National Natural Science Foundation of China(Grant No.52442104)the Application Research Program of Liaoning Province(Grant No.2022JH2/01300219)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.3132024210)the Scientific Research Fund of the Educational Department of Liaoning Province(Nos.LJ212410151013,LJKMZ20220359)。
文摘Wearable bioelectronic devices are rapidly evolving towards miniaturization and multifunctionality,with remarkable features such as flexibility and comfort.However,achieving a sustainable power supply for wearable bioelectronic devices is still a great challenge.Triboelectric nanogenerators(TENGs)provide an efficient solution by converting irregular,low-frequency bioenergy from the human body into electrical energy.Beyond sustainably powering wearable bioelectronics,the harvested electrical energy also carries rich information for human body sensing.In this conversion process,the choice of material plays a crucial role in affecting the output performance of the TENGs.Among various materials,silicone rubber(SR)stands out due to its exceptional plasticity,flexibility,comfortability and other favorable properties.Moreover,with appropriate treatment,SR can achieve extreme functionalities such as high robustness,good stability,self-healing capabilities,rapid response,and more.In this review,recent advances in wearable SR-based TENGs(SR-TENGs)are systematically reviewed with a focus on their application in different parts of the human body.Given that the manufacturing method of SR-TENGs largely determines its output performance and sensitivity,this paper introduces the design of SR-TENGs,including material selection,process modulation,and structure optimization.Additionally,this article discusses the current challenges in the SR-TENG fabrication technology and potential future directions,aiming to promote the effective development of SR-TENGs in biomechanical energy harvesting and self-powered sensing applications.
基金the project BRIGHT(Project reference:MERA-NET3/0004/2021)financed by national funds from FCT-Fundacao para a Ciência e a Tecnologia,I.P.,in the scope of the projects LA/P/0037/2020,UIDP/50025/2020 and UIDB/50025/2020 of the Associate Laboratory Institute of Nanostructures,Nanomodelling and Nanofabrication-i3N+6 种基金the support from the i3N-FCT-Portuguese Foundation for Science and Technology through the Ph.D.(Scholarship grant no.UI/BD/151288/2021)also partially supported by European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreements number 952169(SYNERGY,H2020-WIDESPREAD-2020-5,CSA)and 101008701(EMERGE,H2020-INFRAIA-2020-1),and 101070255(REFORM,HORIZON-C L4-2021-DIGITAL-EMERGING-01)also supported by LISBOA-05-3559-FSE-000007CENTRO-04-3559FSE-000094 operationsco-funded by the Lisboa 2020,Centro 2020 programme,Portugal 2020,European Union,through the European Social FundFunda??o para a Ciência e Tecnologia(FCT)Agência Nacional de Inovacao(ANI)。
文摘Textiles for health and sporting activity monitoring are on the rise with the advent of smart portable wearables.The intention of this work is to design wireless monitoring wearables,based on widely available textiles and low environmental impact production technologies.Herein we have developed a polymeric ink which is able to functionalize different types of textile fibers(including silver conducting fibers,cotton,and commercial textile)with poly pyrrole.These fibers were weaved together with a thinner silver conducting fiber and carbon fiber to form a touch-sensitive energy harvesting system that would generate an electric output when mechanical pressure is applied to it.Different prototypes were manufactured with loom weaving accessories to simulate real textile cloths.By simple touch,the prototypes produced a maximum voltage of 244 V and a maximum power density of 2.29 W m^(-2).The current generated is then transformed into a digital signal,which is further utilized for human motion or gesture monitorization.The system comprises a wireless block for the Internet of Things(IoT)applicability that will be eventually extended to future remote health and sports monitoring systems.
基金supported by National Natural Science Foundation of China(52372284,52275187,52202364)Natural Science Foundation of Henan(232300421135).
文摘Self-charging power systems are required for wearable electronic devices to provide energy supply.However,low charging efficiency,complex preparation process and poor wearability limit its application.Herein,a highly efficient,wearable self-charging power system is reported,which consists of a triboelectric nanogenerator(TENG)with fabric coated by MXene paste as conductive layer and micro-supercapacitors(MSCs)with graphene films as electrode.The conductive layer of TENG was prepared by dip-spin coating MXene paste on cotton fabric.The electrodes of MSCs were made by mask-assisted vacuum filtration of graphene solution.The TENG conductive layer and MSCs electrodes with electrolyte were encapsulated by two identical silicone rubbers.The silicon rubbers work as triboelectric layer of the TENG as well as the protective layers of the self-charging power system.The cotton fabrics and silicon rubbers provide strength and flexibility for the system.The MXene paste on cotton fabrics provides excellent energy harvesting ability of TENG due to high conductivity and high charge trapping ability.The TENG can harvest the energy of pressing by a palm.After 147 s of continually pressing/releasing cycles,the collected energy can charge 2 series-connected MSCs array to 1.6 V,which can power an electronic watch for 25 s.Compared with similar systems,this self-charging system was constructed by a simple method from low cost starting materials and exhibits ultra-high performance.The research provides an easy and economical solution of self-charge system for wearable electronic devices.
基金Shanghai Municipal Commission for Science and Technology,Grant/Award Number:23ZR1402500National Natural Science Foundation of China,Grant/Award Number:51973034+1 种基金National Scholarship CouncilNational Key Research and Development Program of China,Grant/Award Number:2023YFB3809800.
文摘Graphene fiber supercapacitors(GFSCs)have garnered significant attention due to their exceptional features,including high power density,rapid charge/discharge rates,prolonged cycling durability,and versatile weaving capabilities.Nevertheless,inherent challenges in graphene fibers(GFs),particularly the restricted ion-accessible specific surface area(SSA)and sluggish ion transport kinetics,hinder the achievement of optimal capacitance and rate performance.Despite existing reviews on GFSCs,a notable gap exists in thoroughly exploring the kinetics governing the energy storage process in GFSCs.This review aims to address this gap by thoroughly analyzing the energy storage mechanism,fabrication methodologies,property manipulation,and wearable applications of GFSCs.Through theoretical analysis of the energy storage process,specific parameters in advanced GF fabrication methodologies are carefully summarized,which can be used to modulate nano/micro-structures,thereby enhancing energy storage kinetics.In particular,enhanced ion storage is realized by creating more ion-accessible SSA and introducing extra-capacitive components,while accelerated ion transport is achieved by shortening the transport channel length and improving the accessibility of electrolyte ions.Building on the established structure-property relationship,several critical strategies for constructing optimal surface and structure profiles of GF electrodes are summarized.Capitalizing on the exceptional flexibility and wearability of GFSCs,the review further underscores their potential as foundational elements for constructing multifunctional e-textiles using conventional textile technologies.In conclusion,this review provides insights into current challenges and suggests potential research directions for GFSCs.
基金supported by the National Natural Science Foundation of China(22176221 and 22273045)the Central Public-interest Scientific Institution Basal Research Fund,Chinese Academy of Fishery Sciences(2024XT09)+1 种基金the Tsinghua University Independent Scientific Research Plan for Young Investigatorthe Tsinghua University Initiative Scientific Research Program。
文摘Wearable electronics incorporating proteins for biocompatibility have garnered significant research attention,given their potential applications in biocompatible medical devices,artificial skin,humanoid robots,and other fields.However,a notable challenge exists,as many wearable electronics currently lack those essential properties due to issues such as non-biological compatibility,as well as insufficient mechanical and conductive performance.Here,we have developed a hybrid keratin(KE)hydrogel by incorporating a liquid metal(LM,eutectic gallium-indium alloy)to design a wearable electronic device with excellent biocompatibility,enhanced conductivity,and good mechanical properties.The resulting keratin liquid metal(KELM)hydrogel demonstrates favorable mechanical characteristics,including good tensile strength(166 kPa),impressive stretchability(2600%),and long-term stability.Furthermore,it exhibits good conductivity(6.84 S·m^(-1))and sensitivity as a sensing material(gauge factor(GF)=7.03),rendering it suitable for constructing high-performance strain sensors.Notably,the KELM hydrogel-based wearable electronics extend their functionality to monitoring marine inhabitants'health.This innovative application provides new insights for designing the next generation of biomimetic electronic devices,with potential applications in human-machine interfaces,electronic skin,artificial intelligence,and health monitoring.
文摘Yongtao Yu,Yuelin Yu et al.Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors.Energy Environ.Mater.2024,7,e12700.On page 4 of this article,the first paragraph of 2.4,line 14(PDF version,same below),there is a spelling mistake of“sui,”.It should be changed to“suitable”.The denominator“dt”in the Equation(3)should be changed to“dt”.
基金supported by the Korea Environment Industry&Technology Institute(KEITI)through Digital Infrastructure Building Project for Monitoring,Surveying and Evaluating the Environmental Health program,funded by the Korea Ministry of Environment(MOE)(2021003330008)supported by the KIST Internal program(2E32851)+1 种基金supported by the Korea Health Technology Research and Development(R&D)Project through the Korea Health Industry Development Institute(KHIDI)and Korea Dementia Research Center(KDRC),funded by the Ministry of Health&Welfare and Ministry of Science and ICT,Republic of Korea(HU20C0164)the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2022R1A6A3A01087298)。
文摘The various bioacoustics signals obtained with auscultation contain complex clinical information that has been traditionally used as biomarkers,however,they are not extensively used in clinical studies owing to their spatiotemporal limitations.In this study,we developed a wearable stethoscope for wireless,skinattachable,low-power,continuous,real-time auscultation using a lung-sound-monitoring-patch(LSMP).LSMP can monitor respiratory function through a mobile app and classify normal and adventitious breathing by comparing their unique acoustic characteristics.The human heart and breathing sounds from humans can be distinguished from complex sound signals consisting of a mixture of bioacoustic signals and external noise.The performance of the LSMP sensor was further demonstrated in pediatric patients with asthma and elderly chronic obstructive pulmonary disease(COPD)patients where wheezing sounds were classified at specific frequencies.In addition,we developed a novel method for counting wheezing events based on a two-dimensional convolutional neural network deep-learning model constructed de novo and trained with our augmented fundamental lung-sound data set.We implemented a counting algorithm to identify wheezing events in real-time regardless of the respiratory cycle.The artificial intelligence-based adventitious breathing event counter distinguished>80%of the events(especially wheezing)in long-term clinical applications in patients with COPD.