An ultra long haul WDM (ULWDM) system in ZTE China is introduced in this report, whose transmission distance has been extended to 5490km, with 50GHz channel spacing in a bandwidth of 75nm in C and L bands. The structu...An ultra long haul WDM (ULWDM) system in ZTE China is introduced in this report, whose transmission distance has been extended to 5490km, with 50GHz channel spacing in a bandwidth of 75nm in C and L bands. The structure and techniques of the commercial equipment and experiment facilities are introduced. Some important techniques - RZ modulation, distributed amplification, and automatic control--in this system are introduced. Some test results are described as well.展开更多
In this paper,theoretical analysis of two-dimensional photonic crystal ring resonator(2D PCRR) based add-drop filter(ADF) is presented for coarse wavelength division multiplexing(CWDM) system to drop a channel at 1511...In this paper,theoretical analysis of two-dimensional photonic crystal ring resonator(2D PCRR) based add-drop filter(ADF) is presented for coarse wavelength division multiplexing(CWDM) system to drop a channel at 1511 nm using hexagonal rods that are positioned in the square lattice.The 2D finite difference time domain(2D FDTD) method and plane wave expansion(PWE) method are used for obtaining the filter response and band structure of the filter respectively.Close to 100 dropping and coupling efficiencies at 1511 nm and 16 nm of bandwidth are observed through simulation.This is very well meeting the requirement of ITU-T G.694.2 standard,which is specified for metro access and short haul optical networks.The overall size of the proposed filter is 11.4 μm×11.4 μm.It can also be used in integrated optics.展开更多
An optical WDM transmissiou system using 3 EDFAs with 12 channels and a totaltransmission length of 250 km is introduced.The total hit rate of this system is 3.6Gb/s.This system works well with low hit-error-rate.It i...An optical WDM transmissiou system using 3 EDFAs with 12 channels and a totaltransmission length of 250 km is introduced.The total hit rate of this system is 3.6Gb/s.This system works well with low hit-error-rate.It is a WDM system with the most channelsin China.展开更多
Optical channel pre-emphasis equalization is experimentally researched for a 270 km 40 × 40 Gbit/s wavelength division multiplexing (WDM) transmission system with three Erbium-doped fiber amplifiers (ED- FAs)...Optical channel pre-emphasis equalization is experimentally researched for a 270 km 40 × 40 Gbit/s wavelength division multiplexing (WDM) transmission system with three Erbium-doped fiber amplifiers (ED- FAs) and Raman amplifiers concatenated as booster amplifier. The channel imbalance of the overall system changes with different sets of power launched into EDFAs. By appropriately choosing the power input to concatenated EDFAs, the output spectrum of 40 channel signal can be equalized to the most extent. The merit of benefit can be around 5.5 dB by this pre-emphasis equalization. The requirement for the gain equalizer is therefore greatly released. Then the gain imbalance of the overall system and the power imbalance of 40 channels are compared and the two almost matches, but the significant difference lies on some channels. Finally, the pump power into Raman amplifier is also optimized, and another 1.3 dB improvement of channel equaliza- tion can be further achieved.展开更多
The authors' developed combined system model can be considered under the concept of next generation optical network (NGON) as a model for the future design of backbone networks. Such solution can be topical in the ...The authors' developed combined system model can be considered under the concept of next generation optical network (NGON) as a model for the future design of backbone networks. Such solution can be topical in the result of different telecom operators' optical networks convergence. In this case a necessity to transmit differently modulated signals over a single optical fiber even with different bit rates may occur. This research is performed with OptSim 5.2 simulation software that numerically solves nonlinear SchrOdinger equation. The authors have revealed the optimal parameter configuration for developed combined transmission systems and obtained in system's channels detected signals bit-error-rate (BER) correlation diagrams. They represent BER as a function from different system's parameters such as channel output power level, optical amplifier fixed output power level and system's channels allotment in C-band of ITU-T (Telecommunication Standardization Sector of the International Telecommunications Union) recommended spectral grid. As well as these obtained BER values were compared with the results for similar system, where instead of standard single mode fiber (according ITU-T Rec. G.652 D) optical signals are transmitted over non-zero dispersion shifted fiber (ITU-T Rec. G. 655).展开更多
We systemically investigate the interchannel four-wave mixing (FWM) in dispersion-managed WDM systems with arbitrary launch position. We optimize the number of fiber sections, and the dispersion ratio for the system p...We systemically investigate the interchannel four-wave mixing (FWM) in dispersion-managed WDM systems with arbitrary launch position. We optimize the number of fiber sections, and the dispersion ratio for the system performance.展开更多
In this paper,a wavelength division multiplexing (WDM) transmission system derived from the coherent optical orthogonal frequency division multiplexing (CO-OFDM) with polarization division multiplexing (PDM) and 16-or...In this paper,a wavelength division multiplexing (WDM) transmission system derived from the coherent optical orthogonal frequency division multiplexing (CO-OFDM) with polarization division multiplexing (PDM) and 16-order quadrature amplitude modulation (QAM) is studied. A simulation of 80-channel WDM transmission system with data rate of 200 Gbit/s is built, and the transmission performance of the system is analyzed. The simulation results show that the system Q value of the WDM channels at 16 Tbit/s with a spectral efficiency of 7.14 bit/s/Hz is potentially over 10.0 dB for a long haul transmission up to 1800 km in a standard single-mode fiber.展开更多
The arrival of 5G and the incoming 6G era demand ultralarge-capacity and long-distance transmission for wired and wireless communications.With adequate bandwidth,the terahertz(THz)-wave(0.3 THz–10 THz)is very promisi...The arrival of 5G and the incoming 6G era demand ultralarge-capacity and long-distance transmission for wired and wireless communications.With adequate bandwidth,the terahertz(THz)-wave(0.3 THz–10 THz)is very promising and has the ability to carry ultra-high-speed signals[1–7].However,there has been little research on THz-over-fiber technology until now.Therefore,it is extremely competitive and challenging to achieve the potential THz-over-fiber communication for the 6G technology in the near future.展开更多
In this paper, we have evaluated a bidirectional wavelength division multiplexing passive optical network(WDM-PON) employing intensity modulated/direct detection optical orthogonal frequency division multiplexing(IM/D...In this paper, we have evaluated a bidirectional wavelength division multiplexing passive optical network(WDM-PON) employing intensity modulated/direct detection optical orthogonal frequency division multiplexing(IM/DD-OFDM). The proposed system employs 100 Gbit/s 16 quadrature amplitude modulation(16-QAM) downstream and 5 Gbit/s on-off keying(OOK) upstream wavelengths, respectively. The proposed system is considered low-cost as non-coherent IM/DD OFDM technology and a simple reflective semiconductor optical amplifier(RSOA) colorless transmitter are employed and no dispersion compensating fiber(DCF) is needed. Based on the bit error rate(BER) results of WDM signals, the proposed WDM-PON system can achieve up to 1.6 Tbit/s(100 Gbit/s/λ × 16 wavelengths) downstream transmission over a 30 km single mode fiber(SMF).展开更多
This paper investigates the architecture of Tbits/s Wavelength Division Multiplexing (WDM) system by using a Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM) with 4-QAM for long haul transmissions...This paper investigates the architecture of Tbits/s Wavelength Division Multiplexing (WDM) system by using a Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM) with 4-QAM for long haul transmissions of 1800 Km SM. A simulation of 20 WDM channels spaced at 50 GHz, and 20 OFDM signals each with 50 Gbits/s bitrate to produce data rate of 1 Tbits/s is built. The system performance is studied by observing the constellation diagram of the signal and the relationship of BER and OSNR with regard to transmission distance. The results show that the BER increases as the transmission distance increases. Also, as the transmission distance increases, the OSNR needs to be increased to maintain BER in less than 10-3.展开更多
A scheme of WDM+ OCDMA system employing optical hard-limiter(OHL) is proposed, and its performance of normalized throughput is analyzed. The upper bound of the normalized throughput is obtained when all the simulta...A scheme of WDM+ OCDMA system employing optical hard-limiter(OHL) is proposed, and its performance of normalized throughput is analyzed. The upper bound of the normalized throughput is obtained when all the simultaneous users are equally allocated to different wavelength channels. The lower bound of the normalized throughput is obtained when all the simultaneous users are firstly allocated to the same wavelength channels. Compared with the performance of VVDM+ OCDMA system without OHL, both the upper bound and lower bound of the normalized throughput in WDM + OCDMA system with OHL can be improved.展开更多
A new concatenated code of RS(255,239)+BCH(2 040,1 930) code to he suitable for WDM optical transmission systems is proposed. The simulation resuhs show that this new concatenated code. compared with the RS(255,...A new concatenated code of RS(255,239)+BCH(2 040,1 930) code to he suitable for WDM optical transmission systems is proposed. The simulation resuhs show that this new concatenated code. compared with the RS(255,239)4-CSOC(k0/n0=6/7, J= 8) code in ITU-TG. 75.1, has a lower redundancy and better error-correction performance, furthermore, its net coding gain(NCG) is respectively 0. 46 dB, 0.43 dB morethanthatofRS(255,239)+CSOC(k0/n0= 6/7, J= 8) code and BCH(3860,3824)+BCH (2 040,1 930) code in ITU TG. 75. 1 at the third iteration for the bit error rate(BER) of 10^-12. Therefore, the new super forward error correction(Super-FEC) concatenated code can be better used in ultra long-haul, ultra large-capacity and ultra high-speed WDM optical communication systems.展开更多
A new hybrid WDM/TDM passive optical network (PON) implemented by using all-optical wavelength converters (AOWCs) is proposed. The AOWCs are based on the cross-gain modulation (XGM) effect of the semiconductor o...A new hybrid WDM/TDM passive optical network (PON) implemented by using all-optical wavelength converters (AOWCs) is proposed. The AOWCs are based on the cross-gain modulation (XGM) effect of the semiconductor optical amplifier (SOA). Moreover, the feasibility of this sys- tem is experimentally demonstrated by evaluating the impacts of the optical wavelength conversion, time domain waveforms, eye diagrams and bit-error-rate (BER) in AOWC. The results show that the proposal will be a promising solution for the next generation access networks.展开更多
Optical transport networks are now the basic infrastructure of modern communications systems, including the SDH and WDM backbone network of local network operators, in the case of Cameroon. Given the colossal investme...Optical transport networks are now the basic infrastructure of modern communications systems, including the SDH and WDM backbone network of local network operators, in the case of Cameroon. Given the colossal investments required to deploy these networks, particularly related to the cost of equipment (optical fibers, transponders and multiplexers), the optimization of bandwidth and dynamic allocation of resources is essential to control operating costs and ensure continuity of service. Automatic switching technology for optical networks brings intelligence to the control plane to fully facilitate bandwidth utilization, traffic redirection, and automatic configuration of end-to-end services. This paper considers a local network operator’s WDM network without the implementation of the automatic switching technology, develops a network modeling software platform called Graphic Networks and using graph theory integrates a particularity of the automatic switching technology, which is the automatic rerouting of traffic in case of incident in the network. The incidents considered here are those links or route failures and node failures.展开更多
文摘An ultra long haul WDM (ULWDM) system in ZTE China is introduced in this report, whose transmission distance has been extended to 5490km, with 50GHz channel spacing in a bandwidth of 75nm in C and L bands. The structure and techniques of the commercial equipment and experiment facilities are introduced. Some important techniques - RZ modulation, distributed amplification, and automatic control--in this system are introduced. Some test results are described as well.
文摘In this paper,theoretical analysis of two-dimensional photonic crystal ring resonator(2D PCRR) based add-drop filter(ADF) is presented for coarse wavelength division multiplexing(CWDM) system to drop a channel at 1511 nm using hexagonal rods that are positioned in the square lattice.The 2D finite difference time domain(2D FDTD) method and plane wave expansion(PWE) method are used for obtaining the filter response and band structure of the filter respectively.Close to 100 dropping and coupling efficiencies at 1511 nm and 16 nm of bandwidth are observed through simulation.This is very well meeting the requirement of ITU-T G.694.2 standard,which is specified for metro access and short haul optical networks.The overall size of the proposed filter is 11.4 μm×11.4 μm.It can also be used in integrated optics.
基金the High Technology Research and Development Programme of china.
文摘An optical WDM transmissiou system using 3 EDFAs with 12 channels and a totaltransmission length of 250 km is introduced.The total hit rate of this system is 3.6Gb/s.This system works well with low hit-error-rate.It is a WDM system with the most channelsin China.
基金the National Natural Science Foundation of China (60777024)
文摘Optical channel pre-emphasis equalization is experimentally researched for a 270 km 40 × 40 Gbit/s wavelength division multiplexing (WDM) transmission system with three Erbium-doped fiber amplifiers (ED- FAs) and Raman amplifiers concatenated as booster amplifier. The channel imbalance of the overall system changes with different sets of power launched into EDFAs. By appropriately choosing the power input to concatenated EDFAs, the output spectrum of 40 channel signal can be equalized to the most extent. The merit of benefit can be around 5.5 dB by this pre-emphasis equalization. The requirement for the gain equalizer is therefore greatly released. Then the gain imbalance of the overall system and the power imbalance of 40 channels are compared and the two almost matches, but the significant difference lies on some channels. Finally, the pump power into Raman amplifier is also optimized, and another 1.3 dB improvement of channel equaliza- tion can be further achieved.
文摘The authors' developed combined system model can be considered under the concept of next generation optical network (NGON) as a model for the future design of backbone networks. Such solution can be topical in the result of different telecom operators' optical networks convergence. In this case a necessity to transmit differently modulated signals over a single optical fiber even with different bit rates may occur. This research is performed with OptSim 5.2 simulation software that numerically solves nonlinear SchrOdinger equation. The authors have revealed the optimal parameter configuration for developed combined transmission systems and obtained in system's channels detected signals bit-error-rate (BER) correlation diagrams. They represent BER as a function from different system's parameters such as channel output power level, optical amplifier fixed output power level and system's channels allotment in C-band of ITU-T (Telecommunication Standardization Sector of the International Telecommunications Union) recommended spectral grid. As well as these obtained BER values were compared with the results for similar system, where instead of standard single mode fiber (according ITU-T Rec. G.652 D) optical signals are transmitted over non-zero dispersion shifted fiber (ITU-T Rec. G. 655).
文摘We systemically investigate the interchannel four-wave mixing (FWM) in dispersion-managed WDM systems with arbitrary launch position. We optimize the number of fiber sections, and the dispersion ratio for the system performance.
基金supported by the National Natural Science Foundation of China (No.61047033)the Natural Science Foundation of Shan-dong Province of China (No.ZR2010FM043)the State Key Laboratory of Advanced Optical Communication Systems and Networks(No.2011GZKF031109)
文摘In this paper,a wavelength division multiplexing (WDM) transmission system derived from the coherent optical orthogonal frequency division multiplexing (CO-OFDM) with polarization division multiplexing (PDM) and 16-order quadrature amplitude modulation (QAM) is studied. A simulation of 80-channel WDM transmission system with data rate of 200 Gbit/s is built, and the transmission performance of the system is analyzed. The simulation results show that the system Q value of the WDM channels at 16 Tbit/s with a spectral efficiency of 7.14 bit/s/Hz is potentially over 10.0 dB for a long haul transmission up to 1800 km in a standard single-mode fiber.
文摘The arrival of 5G and the incoming 6G era demand ultralarge-capacity and long-distance transmission for wired and wireless communications.With adequate bandwidth,the terahertz(THz)-wave(0.3 THz–10 THz)is very promising and has the ability to carry ultra-high-speed signals[1–7].However,there has been little research on THz-over-fiber technology until now.Therefore,it is extremely competitive and challenging to achieve the potential THz-over-fiber communication for the 6G technology in the near future.
基金supported by the Erciyes University Scientific Research Projects Coordination Unit (No.FDK-2019-8750)。
文摘In this paper, we have evaluated a bidirectional wavelength division multiplexing passive optical network(WDM-PON) employing intensity modulated/direct detection optical orthogonal frequency division multiplexing(IM/DD-OFDM). The proposed system employs 100 Gbit/s 16 quadrature amplitude modulation(16-QAM) downstream and 5 Gbit/s on-off keying(OOK) upstream wavelengths, respectively. The proposed system is considered low-cost as non-coherent IM/DD OFDM technology and a simple reflective semiconductor optical amplifier(RSOA) colorless transmitter are employed and no dispersion compensating fiber(DCF) is needed. Based on the bit error rate(BER) results of WDM signals, the proposed WDM-PON system can achieve up to 1.6 Tbit/s(100 Gbit/s/λ × 16 wavelengths) downstream transmission over a 30 km single mode fiber(SMF).
文摘This paper investigates the architecture of Tbits/s Wavelength Division Multiplexing (WDM) system by using a Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM) with 4-QAM for long haul transmissions of 1800 Km SM. A simulation of 20 WDM channels spaced at 50 GHz, and 20 OFDM signals each with 50 Gbits/s bitrate to produce data rate of 1 Tbits/s is built. The system performance is studied by observing the constellation diagram of the signal and the relationship of BER and OSNR with regard to transmission distance. The results show that the BER increases as the transmission distance increases. Also, as the transmission distance increases, the OSNR needs to be increased to maintain BER in less than 10-3.
基金This work was supported by National Natural Science Foundationof China(No.60132040) Guangdong Provincial Natural Sci-ence Foundation of China(No.5301028 04300855)
文摘A scheme of WDM+ OCDMA system employing optical hard-limiter(OHL) is proposed, and its performance of normalized throughput is analyzed. The upper bound of the normalized throughput is obtained when all the simultaneous users are equally allocated to different wavelength channels. The lower bound of the normalized throughput is obtained when all the simultaneous users are firstly allocated to the same wavelength channels. Compared with the performance of VVDM+ OCDMA system without OHL, both the upper bound and lower bound of the normalized throughput in WDM + OCDMA system with OHL can be improved.
基金National High Technology Development Program(863) of China (2005AA123730) Natural Science Foundation of Chongqing University of Posts & Telecommunications(A2006 -53)
文摘A new concatenated code of RS(255,239)+BCH(2 040,1 930) code to he suitable for WDM optical transmission systems is proposed. The simulation resuhs show that this new concatenated code. compared with the RS(255,239)4-CSOC(k0/n0=6/7, J= 8) code in ITU-TG. 75.1, has a lower redundancy and better error-correction performance, furthermore, its net coding gain(NCG) is respectively 0. 46 dB, 0.43 dB morethanthatofRS(255,239)+CSOC(k0/n0= 6/7, J= 8) code and BCH(3860,3824)+BCH (2 040,1 930) code in ITU TG. 75. 1 at the third iteration for the bit error rate(BER) of 10^-12. Therefore, the new super forward error correction(Super-FEC) concatenated code can be better used in ultra long-haul, ultra large-capacity and ultra high-speed WDM optical communication systems.
文摘A new hybrid WDM/TDM passive optical network (PON) implemented by using all-optical wavelength converters (AOWCs) is proposed. The AOWCs are based on the cross-gain modulation (XGM) effect of the semiconductor optical amplifier (SOA). Moreover, the feasibility of this sys- tem is experimentally demonstrated by evaluating the impacts of the optical wavelength conversion, time domain waveforms, eye diagrams and bit-error-rate (BER) in AOWC. The results show that the proposal will be a promising solution for the next generation access networks.
文摘Optical transport networks are now the basic infrastructure of modern communications systems, including the SDH and WDM backbone network of local network operators, in the case of Cameroon. Given the colossal investments required to deploy these networks, particularly related to the cost of equipment (optical fibers, transponders and multiplexers), the optimization of bandwidth and dynamic allocation of resources is essential to control operating costs and ensure continuity of service. Automatic switching technology for optical networks brings intelligence to the control plane to fully facilitate bandwidth utilization, traffic redirection, and automatic configuration of end-to-end services. This paper considers a local network operator’s WDM network without the implementation of the automatic switching technology, develops a network modeling software platform called Graphic Networks and using graph theory integrates a particularity of the automatic switching technology, which is the automatic rerouting of traffic in case of incident in the network. The incidents considered here are those links or route failures and node failures.