期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparative Study on Microstructure and Mechanical Properties of Coarse-grained WC-based Cemented Carbides Sintered with Ultrafine WC or (W+C) as Additives 被引量:1
1
作者 于淞百 闵凡路 +6 位作者 LI De NOUDEM Guillaume Jacques ZHANG Hailong MA Jichang ZHAO Kui YAO Zhanhu 张建峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期399-409,共11页
The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.O... The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase. 展开更多
关键词 coarse-grained wc-based cemented carbide ultrafine WC ultrafine(W+C) microstructure mechanical properties
原文传递
Interfacial Microstructure between WC-Based Cermet and Cu Alloy 被引量:1
2
作者 Xinhong WANG, Zengda ZOU, Sili SONG and Shiyao QUSchool of Materials Science and Engineering, Shandong University, Jinan 250061, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期731-734,共4页
A WC-TiC-Co/CuZnNi composite layer was produced on 1045 steel substrate by means of inside-furnace brazing technique. The microstructure, phase constituent and interfacial diffusion behavior between cermet and CuZnNi ... A WC-TiC-Co/CuZnNi composite layer was produced on 1045 steel substrate by means of inside-furnace brazing technique. The microstructure, phase constituent and interfacial diffusion behavior between cermet and CuZnNi alloy were investigated by means of scanning electron microscopy (SEM), transmission electron microscope (TEM), electron probe microanalyzer (EPMA) and X-ray diffraction. The results showed that microstructure of matrix was α and β phases. Cermet particies were surrounded by the α+β phases in the composite layer and their sizes were almost similar to those in original state. The interfacial zone was formed by the mutual diffusion of elements under the condition of high temperature. The interface consists of WC, TiC, CuZn, and CuNi phases, and there are no microcracks and inclusions near the interface. 展开更多
关键词 Cu-base alloy wc-based cermet Interface behavior Microstructure
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部