The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,im...The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,immersion corrosion testing,and electrochemical measurement.The results show that a smooth coating containing NiAl,Ni_(3)Al,M_(7)C_(3),M_(23)C_(6)phases(M=Ni,Al,Cr,W,Fe)and WC particles is prepared by laser cladding.Under a laser scanning speed of 120 mm/min,the microhardness of the cladding coating is 9−11 times that of AlSi5Cu1Mg,due to the synergistic effect of excellent metallurgical bond and newly formed carbides.The Ni−WC coating shows higher corrosion potential(−318.09 mV)and lower corrosion current density(12.33μA/cm^(2))compared with the matrix.The crack-free,dense cladding coating obviously inhibits the penetration of Cl^(−)and H^(+),leading to the remarkedly improved corrosion resistance of cladding coating.展开更多
Thermally sprayed coatings have been used in various fields of industry for enhancing surface characteristics of materials and extending their service life. The contact surface of some mechanical equipment such as the...Thermally sprayed coatings have been used in various fields of industry for enhancing surface characteristics of materials and extending their service life. The contact surface of some mechanical equipment such as the fine pulverization equipment which is used in the woody biomass production process is required to have wear resistance in the water environment. Thermally sprayed coatings would be a good candidate to improve surface wear resistance under water lubrication. The objective of this study was to evaluate the tribological performance of thermally sprayed coatings under water lubrication. Thermally sprayed coatings which were classified into WC, WB and Ni spraying of three categories were compared with water-lubricated sliding test at a sliding velocity of 0.02 m/s and mean pressure of p0 = 10 MPa with a ring-on-disk apparatus. Thermally sprayed coatings showed comparatively high friction coefficient and well wear resistance under water lubrication. WC contained coatings showed better wear resistance than WB and Ni coatings. Thermally sprayed coatings showed obviously different mechanical properties and tribological behaviors, and the effect of wettability and hardness on tribological characteristics was discussed under water lubrication. Friction coefficient increased as the surface contact angle of thermally sprayed coatings increased. The wear rate decreased as the surface hardness of thermally sprayed coatings increased. Wear resistance of thermally sprayed coatings was excellent under water lubrication. WC contained coatings showed lower wear rate than WB and Ni coatings. WC-14CoCr coating showed the lowest wear rate.展开更多
Laser specific energy significantly impacts the quality of composite coatings.Ti−Al/WC coatings were prepared on the TC21 alloy through laser cladding with specific energy ranging from 66.7 to 133.3 J/mm^(2).The resul...Laser specific energy significantly impacts the quality of composite coatings.Ti−Al/WC coatings were prepared on the TC21 alloy through laser cladding with specific energy ranging from 66.7 to 133.3 J/mm^(2).The results indicate that the composite coatings primarily comprised Ti_(2)AlC,α_(2)-Ti_(3)Al,γ-TiAl,TiC,and W phases.A gradual increase in the relative intensity of the diffraction peaks of Ti_(2)AlC,α_(2)-Ti_(3)Al,and TiC appeared with the increase of specific energy.When the specific energy was 116.7 J/mm^(2),the Ti−Al/WC coated alloy achieved a maximum micro-hardness of HV0.2766.3,which represented an increase of 1.96 times compared with TC21 alloy,and the minimum wear rate decreased dramatically.Much improvement in tribological properties was attained through the fine-grained strengthening of the(α_(2)+γ)matrix and the dispersion strengthening of self-lubricating Ti_(2)AlC and intertwining TiC.This study provides valuable insights for the development of high-performance Ti−Al composite coatings.展开更多
Electro-spark deposition(ESD) was adopted for preparing high property coatings by depositing WC-8Co cemented carbide on an spheroidal graphite roll substrate.The microstructure and properties of the coating were inv...Electro-spark deposition(ESD) was adopted for preparing high property coatings by depositing WC-8Co cemented carbide on an spheroidal graphite roll substrate.The microstructure and properties of the coating were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive X-ray(EDX) and ball-disc configuration wear tester.The results show that nanosized particles and amorphous structures prevail in the coating which is metallurgically bonded to the substrate.The microstructures of the transition zone include columnar structure and equiaxed structure.The primary phases of the coating contain W2C, W6C2.54, Fe3W3C, and Co3W3C.The results of abrasive test show that the coating has low friction coefficients(μaverage = 0.18) and the wear mechanisms are mainly abrasive wear, fatigue wear, and oxidation wear.The maximum microhardness value of the coating is about 17410 N/mm2.The study reveals that the electro-spark deposition process has better coating quality and the coating has high wear resistance and hardness.展开更多
文摘The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,immersion corrosion testing,and electrochemical measurement.The results show that a smooth coating containing NiAl,Ni_(3)Al,M_(7)C_(3),M_(23)C_(6)phases(M=Ni,Al,Cr,W,Fe)and WC particles is prepared by laser cladding.Under a laser scanning speed of 120 mm/min,the microhardness of the cladding coating is 9−11 times that of AlSi5Cu1Mg,due to the synergistic effect of excellent metallurgical bond and newly formed carbides.The Ni−WC coating shows higher corrosion potential(−318.09 mV)and lower corrosion current density(12.33μA/cm^(2))compared with the matrix.The crack-free,dense cladding coating obviously inhibits the penetration of Cl^(−)and H^(+),leading to the remarkedly improved corrosion resistance of cladding coating.
文摘Thermally sprayed coatings have been used in various fields of industry for enhancing surface characteristics of materials and extending their service life. The contact surface of some mechanical equipment such as the fine pulverization equipment which is used in the woody biomass production process is required to have wear resistance in the water environment. Thermally sprayed coatings would be a good candidate to improve surface wear resistance under water lubrication. The objective of this study was to evaluate the tribological performance of thermally sprayed coatings under water lubrication. Thermally sprayed coatings which were classified into WC, WB and Ni spraying of three categories were compared with water-lubricated sliding test at a sliding velocity of 0.02 m/s and mean pressure of p0 = 10 MPa with a ring-on-disk apparatus. Thermally sprayed coatings showed comparatively high friction coefficient and well wear resistance under water lubrication. WC contained coatings showed better wear resistance than WB and Ni coatings. Thermally sprayed coatings showed obviously different mechanical properties and tribological behaviors, and the effect of wettability and hardness on tribological characteristics was discussed under water lubrication. Friction coefficient increased as the surface contact angle of thermally sprayed coatings increased. The wear rate decreased as the surface hardness of thermally sprayed coatings increased. Wear resistance of thermally sprayed coatings was excellent under water lubrication. WC contained coatings showed lower wear rate than WB and Ni coatings. WC-14CoCr coating showed the lowest wear rate.
基金supported by the Guangxi Science and Technology Program,China(Nos.Guike AD23026170,Guike AD23026116)the Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology,China(No.22-35-4-S019)+3 种基金the Research Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi,China(No.2023KY0202)China Postdoctoral Science Foundation(No.2024M753642)the Guilin Science and Technology Development Program(Project),China(No.20220124-10)the Innovation Project of GUET Graduate Education,China(No.2024YCXS008).
文摘Laser specific energy significantly impacts the quality of composite coatings.Ti−Al/WC coatings were prepared on the TC21 alloy through laser cladding with specific energy ranging from 66.7 to 133.3 J/mm^(2).The results indicate that the composite coatings primarily comprised Ti_(2)AlC,α_(2)-Ti_(3)Al,γ-TiAl,TiC,and W phases.A gradual increase in the relative intensity of the diffraction peaks of Ti_(2)AlC,α_(2)-Ti_(3)Al,and TiC appeared with the increase of specific energy.When the specific energy was 116.7 J/mm^(2),the Ti−Al/WC coated alloy achieved a maximum micro-hardness of HV0.2766.3,which represented an increase of 1.96 times compared with TC21 alloy,and the minimum wear rate decreased dramatically.Much improvement in tribological properties was attained through the fine-grained strengthening of the(α_(2)+γ)matrix and the dispersion strengthening of self-lubricating Ti_(2)AlC and intertwining TiC.This study provides valuable insights for the development of high-performance Ti−Al composite coatings.
基金supported by the International Science and Technology Cooperation Project of the Ministry of Science and Technology of China (No. 2006DFA52240)
文摘Electro-spark deposition(ESD) was adopted for preparing high property coatings by depositing WC-8Co cemented carbide on an spheroidal graphite roll substrate.The microstructure and properties of the coating were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive X-ray(EDX) and ball-disc configuration wear tester.The results show that nanosized particles and amorphous structures prevail in the coating which is metallurgically bonded to the substrate.The microstructures of the transition zone include columnar structure and equiaxed structure.The primary phases of the coating contain W2C, W6C2.54, Fe3W3C, and Co3W3C.The results of abrasive test show that the coating has low friction coefficients(μaverage = 0.18) and the wear mechanisms are mainly abrasive wear, fatigue wear, and oxidation wear.The maximum microhardness value of the coating is about 17410 N/mm2.The study reveals that the electro-spark deposition process has better coating quality and the coating has high wear resistance and hardness.