There are many techniques for hazard identification and are divided into shortcut,standard and advanced techniques.Among these,HAZOP and What-If techniques are mostly engaged by practitioners in the chemical process i...There are many techniques for hazard identification and are divided into shortcut,standard and advanced techniques.Among these,HAZOP and What-If techniques are mostly engaged by practitioners in the chemical process industry.Both of these have certain advantages and limitations,i.e.,HAZOP is structured,and what-if covers broad range of scenarios.There is no hazard identification method,which can cover a broad range of scenarios and is structured in nature.For this purpose,a new technique namely integrated hazard identification(IHI)is proposed in this article that integrates HAZOP and What-If.The methodology is demonstrated via hazard identification study of urea synthesis section.Risk ranking is used to sort out the worst-case scenario.This worst-case scenario is further studied in detail for quantification that is performed using the ALOHA software.This quantification has assisted to detect ammonia concentrations in nearby control room and surroundings for worst-case scenario.It is revealed that if ammonia pump is not stopped within 10 minutes,concentration inside and outside the control room may reach to 384 ppm and 2630 ppm,compared to 1100 ppm(AEGL-3).Thus the proposed method would be easy,time saving and covers more details and would be handy for practicing engineers working in different chemical process industries.展开更多
Accidents and injuries related to work are major occupational health problems in most of the industrialized countries.Traditional approaches to manage workplace safety in mines have mainly focused on job redesign and ...Accidents and injuries related to work are major occupational health problems in most of the industrialized countries.Traditional approaches to manage workplace safety in mines have mainly focused on job redesign and technical aspects of engineering systems.It is being realized that compliance to rules and regulations of mines is a prerequisite;however,it is not sufficient to achieve further reduction in accident and injury rates in mines.Proactive approaches are necessary to further improve the safety standards in mines.Unsafe conditions and practices in mines lead to a number of accidents,which in turn may cause loss and injury to human lives,damages to property,and loss of production.Hazard identification and risk assessment is an important task for the mining industry which needs to consider all the risk factors at workplaces.Applications of risk management approaches in mines are necessary to identify and quantify potential hazards and to suggest effective solutions.In this paper,the following risk estimation techniques were discussed:(i)DGMS(Directorate General of Mines Safety,India)risk rating criterion,and(ii)a matrix based approach.The proposed tools were demonstrated through an application in an opencast coal mine in India.It was inferred that the risk assessment approach can be used as an effective tool to indentify and control hazards in mines.展开更多
This paper presents a method to identify risk factors during bridge construction.The method integrates the concepts of analytical hierarchy process and fuzzy consistent matrix method.The advantage of the method is tha...This paper presents a method to identify risk factors during bridge construction.The method integrates the concepts of analytical hierarchy process and fuzzy consistent matrix method.The advantage of the method is that instead of using 9-point scale of relative importance of the conventional analytical hierarchy process,it uses a 3-point scale to describe the scale of importance,thus greatly simplifying the identification problem of risk factors.Moreover,the difficulties of making judgment and comparison caused by uncertainty that jeopardizes the accuracy of the results in the conventional analytical hierarchy process can also be overcome.Another advantage of the method is that it does not involve consistency checking,thus saving a large amount of CPU time.It has been demonstrated with a numerical example that the proposed fuzzy analytical hierarchy process based on 3-point scale can offer significant computational savings over the conventional analytical hierarchy process.展开更多
Due to multiple advantages in terms of capacity,safety,dependability and punctuality,rail mass transit plays a vital role in easing urban traffic congestion.In addition,rail mass transit is environmentally friendly.Ev...Due to multiple advantages in terms of capacity,safety,dependability and punctuality,rail mass transit plays a vital role in easing urban traffic congestion.In addition,rail mass transit is environmentally friendly.Even though it is beneficial to passengers in urban areas,security issues have become increasingly serious in recent years.To improve the safety and dependability of the rail mass transit system to some extent and limit the loss to a bare minimum,it is necessary to identify and evaluate the hazards connected with rail mass transit in the early stages of the system’s operation.Against this backdrop,this research employs a riskmatrix approach to examine the dangers connected with Abuja’s rail mass transit system(ARMT).The questionnaire is designed and delivered to 100 participants,including personnel and passengers,to get their perceptions of hazards at the ARMT.The questionnaire is the initial step in the research process.The four safety variables discussed in this study are human error,equipment design failure,environmental conditions and management.Human error is the most significant factor covered in this research.Understanding the source of risk stemming from these four safety variables at the early stages of rail mass transit operation can significantly improve the system’s overall safety and reliability,which can be paramount.According to the findings of the investigations,human-related activity is the most significant possible cause of risk at that ARMT,with a high level of risk portrayed by the data.展开更多
文摘There are many techniques for hazard identification and are divided into shortcut,standard and advanced techniques.Among these,HAZOP and What-If techniques are mostly engaged by practitioners in the chemical process industry.Both of these have certain advantages and limitations,i.e.,HAZOP is structured,and what-if covers broad range of scenarios.There is no hazard identification method,which can cover a broad range of scenarios and is structured in nature.For this purpose,a new technique namely integrated hazard identification(IHI)is proposed in this article that integrates HAZOP and What-If.The methodology is demonstrated via hazard identification study of urea synthesis section.Risk ranking is used to sort out the worst-case scenario.This worst-case scenario is further studied in detail for quantification that is performed using the ALOHA software.This quantification has assisted to detect ammonia concentrations in nearby control room and surroundings for worst-case scenario.It is revealed that if ammonia pump is not stopped within 10 minutes,concentration inside and outside the control room may reach to 384 ppm and 2630 ppm,compared to 1100 ppm(AEGL-3).Thus the proposed method would be easy,time saving and covers more details and would be handy for practicing engineers working in different chemical process industries.
文摘Accidents and injuries related to work are major occupational health problems in most of the industrialized countries.Traditional approaches to manage workplace safety in mines have mainly focused on job redesign and technical aspects of engineering systems.It is being realized that compliance to rules and regulations of mines is a prerequisite;however,it is not sufficient to achieve further reduction in accident and injury rates in mines.Proactive approaches are necessary to further improve the safety standards in mines.Unsafe conditions and practices in mines lead to a number of accidents,which in turn may cause loss and injury to human lives,damages to property,and loss of production.Hazard identification and risk assessment is an important task for the mining industry which needs to consider all the risk factors at workplaces.Applications of risk management approaches in mines are necessary to identify and quantify potential hazards and to suggest effective solutions.In this paper,the following risk estimation techniques were discussed:(i)DGMS(Directorate General of Mines Safety,India)risk rating criterion,and(ii)a matrix based approach.The proposed tools were demonstrated through an application in an opencast coal mine in India.It was inferred that the risk assessment approach can be used as an effective tool to indentify and control hazards in mines.
基金Supported by the National Natural Science Foundation of China(Grant No.50408037)the Shanghai Pujiang Program(Grant No.09PJ1409500)
文摘This paper presents a method to identify risk factors during bridge construction.The method integrates the concepts of analytical hierarchy process and fuzzy consistent matrix method.The advantage of the method is that instead of using 9-point scale of relative importance of the conventional analytical hierarchy process,it uses a 3-point scale to describe the scale of importance,thus greatly simplifying the identification problem of risk factors.Moreover,the difficulties of making judgment and comparison caused by uncertainty that jeopardizes the accuracy of the results in the conventional analytical hierarchy process can also be overcome.Another advantage of the method is that it does not involve consistency checking,thus saving a large amount of CPU time.It has been demonstrated with a numerical example that the proposed fuzzy analytical hierarchy process based on 3-point scale can offer significant computational savings over the conventional analytical hierarchy process.
基金The National Science Foundation of China(Grand No.71971220)the National Science Foundation of Hunan Province,China(Grant No.2019JJ50829).
文摘Due to multiple advantages in terms of capacity,safety,dependability and punctuality,rail mass transit plays a vital role in easing urban traffic congestion.In addition,rail mass transit is environmentally friendly.Even though it is beneficial to passengers in urban areas,security issues have become increasingly serious in recent years.To improve the safety and dependability of the rail mass transit system to some extent and limit the loss to a bare minimum,it is necessary to identify and evaluate the hazards connected with rail mass transit in the early stages of the system’s operation.Against this backdrop,this research employs a riskmatrix approach to examine the dangers connected with Abuja’s rail mass transit system(ARMT).The questionnaire is designed and delivered to 100 participants,including personnel and passengers,to get their perceptions of hazards at the ARMT.The questionnaire is the initial step in the research process.The four safety variables discussed in this study are human error,equipment design failure,environmental conditions and management.Human error is the most significant factor covered in this research.Understanding the source of risk stemming from these four safety variables at the early stages of rail mass transit operation can significantly improve the system’s overall safety and reliability,which can be paramount.According to the findings of the investigations,human-related activity is the most significant possible cause of risk at that ARMT,with a high level of risk portrayed by the data.